Suppr超能文献

入侵生物学概念图:将假说整合到共识网络中。

A conceptual map of invasion biology: Integrating hypotheses into a consensus network.

作者信息

Enders Martin, Havemann Frank, Ruland Florian, Bernard-Verdier Maud, Catford Jane A, Gómez-Aparicio Lorena, Haider Sylvia, Heger Tina, Kueffer Christoph, Kühn Ingolf, Meyerson Laura A, Musseau Camille, Novoa Ana, Ricciardi Anthony, Sagouis Alban, Schittko Conrad, Strayer David L, Vilà Montserrat, Essl Franz, Hulme Philip E, van Kleunen Mark, Kumschick Sabrina, Lockwood Julie L, Mabey Abigail L, McGeoch Melodie A, Palma Estíbaliz, Pyšek Petr, Saul Wolf-Christian, Yannelli Florencia A, Jeschke Jonathan M

机构信息

Department of Biology, Chemistry, Pharmacy Institute of Biology Freie Universität Berlin Berlin Germany.

Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB) Berlin Germany.

出版信息

Glob Ecol Biogeogr. 2020 Jun;29(6):978-991. doi: 10.1111/geb.13082. Epub 2020 Mar 25.

Abstract

BACKGROUND AND AIMS

Since its emergence in the mid-20th century, invasion biology has matured into a productive research field addressing questions of fundamental and applied importance. Not only has the number of empirical studies increased through time, but also has the number of competing, overlapping and, in some cases, contradictory hypotheses about biological invasions. To make these contradictions and redundancies explicit, and to gain insight into the field's current theoretical structure, we developed and applied a Delphi approach to create a consensus network of 39 existing invasion hypotheses.

RESULTS

The resulting network was analysed with a link-clustering algorithm that revealed five (resource availability, biotic interaction, propagule, trait and Darwin's clusters) representing complementary areas in the theory of invasion biology. The network also displays hypotheses that link two or more clusters, called , which are important in determining network structure. The network indicates hypotheses that are logically linked either positively (77 connections of support) or negatively (that is, they contradict each other; 6 connections).

SIGNIFICANCE

The network visually synthesizes how invasion biology's predominant hypotheses are conceptually related to each other, and thus, reveals an emergent structure - a - that can serve as a navigation tool for scholars, practitioners and students, both inside and outside of the field of invasion biology, and guide the development of a more coherent foundation of theory. Additionally, the outlined approach can be more widely applied to create a conceptual map for the larger fields of ecology and biogeography.

摘要

背景与目标

自20世纪中叶出现以来,入侵生物学已发展成为一个富有成效的研究领域,致力于解决具有基础和应用重要性的问题。不仅实证研究的数量随时间增加,而且关于生物入侵的相互竞争、重叠且在某些情况下相互矛盾的假设数量也在增加。为了明确这些矛盾和冗余之处,并深入了解该领域当前的理论结构,我们开发并应用了德尔菲法来创建一个由39个现有入侵假设组成的共识网络。

结果

使用链接聚类算法对所得网络进行分析,揭示了五个聚类(资源可用性、生物相互作用、繁殖体、性状和达尔文聚类),它们代表了入侵生物学理论中的互补领域。该网络还展示了连接两个或更多聚类的假设,称为“桥梁假设”,这在确定网络结构方面很重要。该网络显示了在逻辑上正相关(77个支持连接)或负相关(即相互矛盾;6个连接)的假设。

意义

该网络直观地综合了入侵生物学的主要假设在概念上是如何相互关联的,从而揭示了一种新兴结构——一种“概念框架”,它可以作为入侵生物学领域内外的学者、从业者和学生的导航工具,并指导建立更连贯的理论基础。此外,所概述的方法可以更广泛地应用于为更大的生态学和生物地理学领域创建概念图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a961/8647925/9f28a014c56b/GEB-29-978-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验