Carreras Joaquim, Hiraiwa Shinichiro, Kikuti Yara Yukie, Miyaoka Masashi, Tomita Sakura, Ikoma Haruka, Ito Atsushi, Kondo Yusuke, Roncador Giovanna, Garcia Juan F, Ando Kiyoshi, Hamoudi Rifat, Nakamura Naoya
Department of Pathology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Japan.
Monoclonal Antibodies Unit, Spanish National Cancer Research Center (Centro Nacional de Investigaciones Oncologicas, CNIO), Melchor Fernandez Almagro 3, 28029 Madrid, Spain.
Cancers (Basel). 2021 Dec 20;13(24):6384. doi: 10.3390/cancers13246384.
Diffuse large B-cell lymphoma (DLBCL) is one of the most frequent subtypes of non-Hodgkin lymphomas. We used artificial neural networks (multilayer perceptron and radial basis function), machine learning, and conventional bioinformatics to predict the overall survival and molecular subtypes of DLBCL. The series included 106 cases and 730 genes of a pancancer immune-oncology panel (nCounter) as predictors. The multilayer perceptron predicted the outcome with high accuracy, with an area under the curve (AUC) of 0.98, and ranked all the genes according to their importance. In a multivariate analysis, , , , and correlated with favorable survival (hazard risks: 0.3-0.5), and , , and , with poor survival (hazard risks = 1.0-2.1). Gene set enrichment analysis (GSEA) showed enrichment toward poor prognosis. These high-risk genes were also associated with the gene expression of M2-like tumor-associated macrophages (), and expression. The prognostic relevance of this set of 7 genes was also confirmed within the IPI and translocation strata, the EBER-negative cases, the DLBCL not-otherwise specified (NOS) (High-grade B-cell lymphoma with and and/or rearrangements excluded), and an independent series of 414 cases of DLBCL in Europe and North America (GSE10846). The perceptron analysis also predicted molecular subtypes (based on the Lymph2Cx assay) with high accuracy (AUC = 1). , , and were associated with the germinal center B-cell (GCB) subtype, and , , , and were associated with the activated B-cell (ABC)/unspecified subtype. The GSEA had a sinusoidal-like plot with association to both molecular subtypes, and immunohistochemistry analysis confirmed the correlation of with the GCB subtype in another series of 96 cases (notably, MAPK3 also correlated with LMO2, but not with M2-like tumor-associated macrophage markers CD163, CSF1R, TNFAIP8, CASP8, PD-L1, PTX3, and IL-10). Finally, survival and molecular subtypes were successfully modeled using other machine learning techniques including logistic regression, discriminant analysis, SVM, CHAID, C5, C&R trees, KNN algorithm, and Bayesian network. In conclusion, prognoses and molecular subtypes were predicted with high accuracy using neural networks, and relevant genes were highlighted.
弥漫性大B细胞淋巴瘤(DLBCL)是非霍奇金淋巴瘤最常见的亚型之一。我们使用人工神经网络(多层感知器和径向基函数)、机器学习和传统生物信息学方法来预测DLBCL的总生存期和分子亚型。该系列研究纳入了106例病例以及一个泛癌免疫肿瘤学检测板(nCounter)中的730个基因作为预测指标。多层感知器对预后的预测准确率很高,曲线下面积(AUC)为0.98,并根据基因的重要性对所有基因进行了排序。在多变量分析中, 、 、 、 与良好的生存期相关(风险比:0.3 - 0.5),而 、 、 、 与不良生存期相关(风险比 = 1.0 - 2.1)。基因集富集分析(GSEA)显示向预后不良方向富集。这些高风险基因还与M2样肿瘤相关巨噬细胞的基因表达( )以及 表达相关。在国际预后指数(IPI)和 易位分层、EBER阴性病例、未另行指定的DLBCL(NOS)(排除伴有 、 重排和/或 重排的高级别B细胞淋巴瘤)以及欧洲和北美的一个包含414例DLBCL的独立系列研究(GSE10846)中,这7个基因的预后相关性也得到了证实。感知器分析还能高精度地预测分子亚型(基于Lymph2Cx检测)(AUC = 1)。 、 、 与生发中心B细胞(GCB)亚型相关, 、 、 、 与活化B细胞(ABC)/未指定亚型相关。GSEA呈现出与两种分子亚型相关的正弦样图谱,免疫组织化学分析在另一组96例病例中证实了 与GCB亚型的相关性(值得注意的是,MAPK3也与LMO2相关,但与M2样肿瘤相关巨噬细胞标志物CD163、CSF1R、TNFAIP8、CASP8、PD - L1、PTX3和IL - 10无关)。最后,使用逻辑回归、判别分析、支持向量机、CHAID、C5、C&R树、KNN算法和贝叶斯网络等其他机器学习技术成功地对生存期和分子亚型进行了建模。总之,使用神经网络可以高精度地预测预后和分子亚型,并突出了相关基因。