Cushman Samuel A
USDA Forest Service, Rocky Mountain Research Station, Flagstaff, AZ 86001, USA.
Entropy (Basel). 2021 Dec 1;23(12):1616. doi: 10.3390/e23121616.
Several methods have been recently proposed to calculate configurational entropy, based on Boltzmann entropy. Some of these methods appear to be fully thermodynamically consistent in their application to landscape patch mosaics, but none have been shown to be fully generalizable to all kinds of landscape patterns, such as point patterns, surfaces, and patch mosaics. The goal of this paper is to evaluate if the direct application of the Boltzmann relation is fully generalizable to surfaces, point patterns, and landscape mosaics. I simulated surfaces and point patterns with a fractal neutral model to control their degree of aggregation. I used spatial permutation analysis to produce distributions of microstates and fit functions to predict the distributions of microstates and the shape of the entropy function. The results confirmed that the direct application of the Boltzmann relation is generalizable across surfaces, point patterns, and landscape mosaics, providing a useful general approach to calculating landscape entropy.
最近已经提出了几种基于玻尔兹曼熵来计算构型熵的方法。其中一些方法在应用于景观斑块镶嵌体时似乎在热力学上是完全一致的,但尚未证明有任何一种方法可以完全推广到所有类型的景观格局,如点格局、表面和斑块镶嵌体。本文的目的是评估玻尔兹曼关系的直接应用是否能完全推广到表面、点格局和景观镶嵌体。我用分形中性模型模拟了表面和点格局,以控制它们的聚集程度。我使用空间置换分析来生成微观状态的分布,并拟合函数来预测微观状态的分布和熵函数的形状。结果证实,玻尔兹曼关系的直接应用可以推广到表面、点格局和景观镶嵌体,为计算景观熵提供了一种有用的通用方法。