Gonçalves Micael F M, Hilário Sandra, Tacão Marta, Van de Peer Yves, Alves Artur, Esteves Ana C
CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.
J Fungi (Basel). 2021 Dec 18;7(12):1091. doi: 10.3390/jof7121091.
section encompasses several species that express both beneficial (e.g., biochemical transformation of steroids and alkaloids, enzymes and metabolites) and harmful compounds (e.g., production of ochratoxin A (OTA)). Given their relevance, it is important to analyze the genetic and metabolic diversity of the species of this section. We sequenced the genome of CMG 70, isolated from sea water, and compared it with the genomes of species from section , including 's strain type. The genome was characterized considering secondary metabolites biosynthetic gene clusters (BGCs), carbohydrate-active enzymes (CAZymes), and transporters. To uncover the biosynthetic potential of CMG 70, an untargeted metabolomics (LC-MS/MS) approach was used. Cultivating the fungus in the presence and absence of sea salt showed that CMG 70 metabolite profiles are salt dependent. Analyses of the methanolic crude extract revealed the presence of both unknown and well-known compounds, such as ochratoxin A, anti-viral (e.g., 3,5-Di-tert-butyl-4-hydroxybenzoic acid and epigallocatechin), anti-bacterial (e.g., 3-Hydroxybenzyl alcohol, l-pyroglutamic acid, lecanoric acid), antifungal (e.g., lpyroglutamic acid, 9,12,13-Trihydroxyoctadec-10-enoic acid, hydroxyferulic acid), and chemotherapeutic (e.g., daunomycinone, mitoxantrone) related metabolites. Comparative analysis of 17 genomes from 16 species revealed abundant CAZymes (568 per species), secondary metabolite BGCs (73 per species), and transporters (1359 per species). Some BGCs are highly conserved in this section (e.g., pyranonigrin E and UNII-YC2Q1O94PT (ACR toxin I)), while others are incomplete or completely lost among species (e.g., bikaverin and chaetoglobosins were found exclusively in series , while asperlactone seemed completely lost). The results of this study, including genome analysis and metabolome characterization, emphasize the molecular diversity of CMG 70, as well as of other species in the section .
该分类包含几个物种,这些物种既能产生有益化合物(例如类固醇和生物碱的生化转化、酶和代谢产物),也能产生有害化合物(例如赭曲霉毒素A(OTA)的产生)。鉴于它们的相关性,分析该分类中物种的遗传和代谢多样性非常重要。我们对从海水中分离出的CMG 70的基因组进行了测序,并将其与该分类中其他物种的基因组进行了比较,包括的菌株类型。通过考虑次生代谢物生物合成基因簇(BGCs)、碳水化合物活性酶(CAZymes)和转运蛋白对CMG 70基因组进行了表征。为了揭示CMG 70的生物合成潜力,采用了非靶向代谢组学(LC-MS/MS)方法。在有海盐和无海盐的条件下培养该真菌表明,CMG 70的代谢物谱依赖于盐。对甲醇粗提物的分析揭示了未知和已知化合物的存在,如赭曲霉毒素A、抗病毒化合物(例如3,5-二叔丁基-4-羟基苯甲酸和表没食子儿茶素)、抗菌化合物(例如3-羟基苄醇、L-焦谷氨酸、地衣缩酚酸)、抗真菌化合物(例如L-焦谷氨酸、9,12,13-三羟基十八碳-10-烯酸、羟基阿魏酸)以及化疗相关代谢物(例如柔红霉素酮、米托蒽醌)。对16个物种的17个基因组的比较分析揭示了丰富的CAZymes(每个物种568个)、次生代谢物BGCs(每个物种73个)和转运蛋白(每个物种1359个)。一些BGCs在该分类中高度保守(例如吡喃黑菌素E和UNII-YC2Q1O94PT(ACR毒素I)),而其他一些在物种间不完整或完全缺失(例如比卡维林和球毛壳菌素仅在系列中发现,而asperlactone似乎完全缺失)。这项研究的结果,包括基因组分析和代谢组表征,强调了CMG 70以及该分类中其他物种的分子多样性。