Suppr超能文献

基于表型组学辅助选择提高紫花苜蓿(Medicago sativa L.)的牧草产量

Phenomics-Assisted Selection for Herbage Accumulation in Alfalfa ( L.).

作者信息

Biswas Anju, Andrade Mario Henrique Murad Leite, Acharya Janam P, de Souza Cleber Lopes, Lopez Yolanda, de Assis Giselle, Shirbhate Shubham, Singh Aditya, Munoz Patricio, Rios Esteban F

机构信息

Department of Agronomy, University of Florida, Gainesville, FL, United States.

EMBRAPA-ACRE, Rio Branco, Brazil.

出版信息

Front Plant Sci. 2021 Dec 7;12:756768. doi: 10.3389/fpls.2021.756768. eCollection 2021.

Abstract

The application of remote sensing in plant breeding is becoming a routine method for fast and non-destructive high-throughput phenotyping (HTP) using unmanned aerial vehicles (UAVs) equipped with sensors. Alfalfa ( L.) is a perennial forage legume grown in more than 30 million hectares worldwide. Breeding alfalfa for herbage accumulation (HA) requires frequent and multiple phenotyping efforts, which is laborious and costly. The objective of this study was to assess the efficiency of UAV-based imagery and spatial analysis in the selection of alfalfa for HA. The alfalfa breeding population was composed of 145 full-sib and 34 half-sib families, and the experimental design was a row-column with augmented representation of controls. The experiment was established in November 2017, and HA was harvested four times between August 2018 and January 2019. A UAV equipped with a multispectral camera was used for HTP before each harvest. Four vegetation indices (VIs) were calculated from the UAV-based images: NDVI, NDRE, GNDVI, and GRVI. All VIs showed a high correlation with HA, and VIs predicted HA with moderate accuracy. HA and NDVI were used for further analyses to calculate the genetic parameters using linear mixed models. The spatial analysis had a significant effect in both dimensions (rows and columns) for HA and NDVI, resulting in improvements in the estimation of genetic parameters. Univariate models for NDVI and HA, and bivariate models, were fit to predict family performance for scenarios with various levels of HA data (simulated by assigning missing values to full dataset). The bivariate models provided higher correlation among predicted values, higher coincidence for selection, and higher genetic gain even for scenarios with only 30% of HA data. Hence, HTP is a reliable and efficient method to aid alfalfa phenotyping to improve HA. Additionally, the use of spatial analysis can also improve the accuracy of selection in breeding trials.

摘要

遥感技术在植物育种中的应用正成为一种常规方法,通过配备传感器的无人机(UAV)实现快速、无损的高通量表型分析(HTP)。紫花苜蓿(Medicago sativa L.)是一种多年生豆科牧草,在全球超过3000万公顷的土地上种植。培育具有高牧草积累量(HA)的紫花苜蓿需要频繁且多次的表型分析工作,这既费力又昂贵。本研究的目的是评估基于无人机的图像和空间分析在紫花苜蓿HA选择中的效率。紫花苜蓿育种群体由145个全同胞家系和34个半同胞家系组成,试验设计为行列排列,并增加了对照的代表性。该试验于2017年11月建立,2018年8月至2019年1月期间对HA进行了四次收获。每次收获前,使用配备多光谱相机的无人机进行HTP。从基于无人机的图像中计算出四个植被指数(VIs):归一化差异植被指数(NDVI)、归一化差异红边指数(NDRE)、绿归一化差异植被指数(GNDVI)和绿红植被指数(GRVI)。所有VIs与HA均呈现高度相关性,且VIs对HA的预测具有中等准确性。使用HA和NDVI通过线性混合模型进一步分析以计算遗传参数。空间分析在HA和NDVI的两个维度(行和列)上均有显著影响,从而改进了遗传参数的估计。针对NDVI和HA的单变量模型以及双变量模型,被用于预测不同HA数据水平(通过对完整数据集赋值缺失值模拟)情况下的家系表现。即使在仅有30%的HA数据的情况下,双变量模型在预测值之间提供了更高的相关性、更高的选择一致性以及更高的遗传增益。因此,HTP是辅助紫花苜蓿表型分析以提高HA的可靠且高效的方法。此外,空间分析的使用还可提高育种试验中选择的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91f2/8689394/f584e2d5cba5/fpls-12-756768-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验