Paris-Saclay University, CentraleSupélec, Laboratory of Mathematics and Computer Science (MICS), Gif-sur-Yvette, France.
Paris-Saclay University, Gustave Roussy, Villejuif, France.
Nat Commun. 2024 Jun 11;15(1):4981. doi: 10.1038/s41467-024-48981-z.
Spatial omics data allow in-depth analysis of tissue architectures, opening new opportunities for biological discovery. In particular, imaging techniques offer single-cell resolutions, providing essential insights into cellular organizations and dynamics. Yet, the complexity of such data presents analytical challenges and demands substantial computing resources. Moreover, the proliferation of diverse spatial omics technologies, such as Xenium, MERSCOPE, CosMX in spatial-transcriptomics, and MACSima and PhenoCycler in multiplex imaging, hinders the generality of existing tools. We introduce Sopa ( https://github.com/gustaveroussy/sopa ), a technology-invariant, memory-efficient pipeline with a unified visualizer for all image-based spatial omics. Built upon the universal SpatialData framework, Sopa optimizes tasks like segmentation, transcript/channel aggregation, annotation, and geometric/spatial analysis. Its output includes user-friendly web reports and visualizer files, as well as comprehensive data files for in-depth analysis. Overall, Sopa represents a significant step toward unifying spatial data analysis, enabling a more comprehensive understanding of cellular interactions and tissue organization in biological systems.
空间组学数据允许对组织架构进行深入分析,为生物学发现开辟了新的机会。特别是,成像技术提供了单细胞分辨率,为细胞组织和动态提供了重要的见解。然而,这些数据的复杂性带来了分析挑战,并需要大量的计算资源。此外,多样化的空间组学技术的激增,如空间转录组学中的 Xenium、MERSCOPE、CosMX,以及多重成像中的 MACSima 和 PhenoCycler,阻碍了现有工具的通用性。我们引入了 Sopa(https://github.com/gustaveroussy/sopa),这是一种与技术无关、内存高效的流水线,具有用于所有基于图像的空间组学的统一可视化器。Sopa 建立在通用的 SpatialData 框架之上,优化了分割、转录/通道聚合、注释和几何/空间分析等任务。它的输出包括用户友好的网络报告和可视化器文件,以及用于深入分析的综合数据文件。总的来说,Sopa 是朝着统一空间数据分析迈出的重要一步,使我们能够更全面地了解生物系统中的细胞相互作用和组织架构。
Nat Commun. 2024-6-11
Brief Bioinform. 2024-3-27
Commun Biol. 2024-7-6
Nat Methods. 2022-2
Comput Struct Biotechnol J. 2022-9-1
Nat Methods. 2025-1
Methods Mol Biol. 2024
NAR Genom Bioinform. 2025-8-21
Genome Biol. 2025-6-20
Bioinform Adv. 2024-11-13
Sci Rep. 2024-10-9
Commun Biol. 2024-7-6
Nat Methods. 2025-1
Cell Genom. 2023-8-21
Science. 2023-8-4
Nat Biotechnol. 2024-2
Nat Rev Genet. 2023-8