文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

汤谱:一种基于图像的空间组学分析的技术不变性流水线。

Sopa: a technology-invariant pipeline for analyses of image-based spatial omics.

机构信息

Paris-Saclay University, CentraleSupélec, Laboratory of Mathematics and Computer Science (MICS), Gif-sur-Yvette, France.

Paris-Saclay University, Gustave Roussy, Villejuif, France.

出版信息

Nat Commun. 2024 Jun 11;15(1):4981. doi: 10.1038/s41467-024-48981-z.


DOI:10.1038/s41467-024-48981-z
PMID:38862483
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11167053/
Abstract

Spatial omics data allow in-depth analysis of tissue architectures, opening new opportunities for biological discovery. In particular, imaging techniques offer single-cell resolutions, providing essential insights into cellular organizations and dynamics. Yet, the complexity of such data presents analytical challenges and demands substantial computing resources. Moreover, the proliferation of diverse spatial omics technologies, such as Xenium, MERSCOPE, CosMX in spatial-transcriptomics, and MACSima and PhenoCycler in multiplex imaging, hinders the generality of existing tools. We introduce Sopa ( https://github.com/gustaveroussy/sopa ), a technology-invariant, memory-efficient pipeline with a unified visualizer for all image-based spatial omics. Built upon the universal SpatialData framework, Sopa optimizes tasks like segmentation, transcript/channel aggregation, annotation, and geometric/spatial analysis. Its output includes user-friendly web reports and visualizer files, as well as comprehensive data files for in-depth analysis. Overall, Sopa represents a significant step toward unifying spatial data analysis, enabling a more comprehensive understanding of cellular interactions and tissue organization in biological systems.

摘要

空间组学数据允许对组织架构进行深入分析,为生物学发现开辟了新的机会。特别是,成像技术提供了单细胞分辨率,为细胞组织和动态提供了重要的见解。然而,这些数据的复杂性带来了分析挑战,并需要大量的计算资源。此外,多样化的空间组学技术的激增,如空间转录组学中的 Xenium、MERSCOPE、CosMX,以及多重成像中的 MACSima 和 PhenoCycler,阻碍了现有工具的通用性。我们引入了 Sopa(https://github.com/gustaveroussy/sopa),这是一种与技术无关、内存高效的流水线,具有用于所有基于图像的空间组学的统一可视化器。Sopa 建立在通用的 SpatialData 框架之上,优化了分割、转录/通道聚合、注释和几何/空间分析等任务。它的输出包括用户友好的网络报告和可视化器文件,以及用于深入分析的综合数据文件。总的来说,Sopa 是朝着统一空间数据分析迈出的重要一步,使我们能够更全面地了解生物系统中的细胞相互作用和组织架构。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ac/11167053/845f10c93b4f/41467_2024_48981_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ac/11167053/0e1e7f2de195/41467_2024_48981_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ac/11167053/204869df16e7/41467_2024_48981_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ac/11167053/5ee1f7bfb4c7/41467_2024_48981_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ac/11167053/df7b7a781626/41467_2024_48981_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ac/11167053/845f10c93b4f/41467_2024_48981_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ac/11167053/0e1e7f2de195/41467_2024_48981_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ac/11167053/204869df16e7/41467_2024_48981_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ac/11167053/5ee1f7bfb4c7/41467_2024_48981_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ac/11167053/df7b7a781626/41467_2024_48981_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7ac/11167053/845f10c93b4f/41467_2024_48981_Fig5_HTML.jpg

相似文献

[1]
Sopa: a technology-invariant pipeline for analyses of image-based spatial omics.

Nat Commun. 2024-6-11

[2]
scBOL: a universal cell type identification framework for single-cell and spatial transcriptomics data.

Brief Bioinform. 2024-3-27

[3]
Tissue characterization at an enhanced resolution across spatial omics platforms with deep generative model.

Nat Commun. 2024-8-2

[4]
Accurate single-molecule spot detection for image-based spatial transcriptomics with weakly supervised deep learning.

Cell Syst. 2024-5-15

[5]
A point cloud segmentation framework for image-based spatial transcriptomics.

Commun Biol. 2024-7-6

[6]
Squidpy: a scalable framework for spatial omics analysis.

Nat Methods. 2022-2

[7]
CellsFromSpace: a fast, accurate, and reference-free tool to deconvolve and annotate spatially distributed omics data.

Bioinform Adv. 2024-5-30

[8]
Computational solutions for spatial transcriptomics.

Comput Struct Biotechnol J. 2022-9-1

[9]
SpatialData: an open and universal data framework for spatial omics.

Nat Methods. 2025-1

[10]
Comparative Methods for Demystifying Spatial Transcriptomics.

Methods Mol Biol. 2024

引用本文的文献

[1]
PRISM: a Python package for interactive and integrated analysis of multiplexed tissue microarrays.

NAR Genom Bioinform. 2025-8-21

[2]
Comparison of spatial transcriptomics technologies using tumor cryosections.

Genome Biol. 2025-6-20

[3]
Cell states and neighborhoods in distinct clinical stages of primary and metastatic esophageal adenocarcinoma.

Cell Rep Med. 2025-6-17

[4]
SpatialKNifeY (SKNY): Extending from spatial domain to surrounding area to identify microenvironment features with single-cell spatial omics data.

PLoS Comput Biol. 2025-2-18

[5]
mxfda: a comprehensive toolkit for functional data analysis of single-cell spatial data.

Bioinform Adv. 2024-11-13

[6]
Deep learning pipeline for automated cell profiling from cyclic imaging.

Sci Rep. 2024-10-9

[7]
TREM2-Expressing Multinucleated Giant Macrophages Are a Biomarker of Good Prognosis in Head and Neck Squamous Cell Carcinoma.

Cancer Discov. 2024-12-2

[8]
A point cloud segmentation framework for image-based spatial transcriptomics.

Commun Biol. 2024-7-6

本文引用的文献

[1]
SpatialData: an open and universal data framework for spatial omics.

Nat Methods. 2025-1

[2]
BIDCell: Biologically-informed self-supervised learning for segmentation of subcellular spatial transcriptomics data.

Nat Commun. 2024-1-13

[3]
A unified pipeline for FISH spatial transcriptomics.

Cell Genom. 2023-8-21

[4]
The dawn of spatial omics.

Science. 2023-8-4

[5]
A spatially resolved single-cell genomic atlas of the adult human breast.

Nature. 2023-8

[6]
Pan-cancer T cell atlas links a cellular stress response state to immunotherapy resistance.

Nat Med. 2023-6

[7]
Dictionary learning for integrative, multimodal and scalable single-cell analysis.

Nat Biotechnol. 2024-2

[8]
The scverse project provides a computational ecosystem for single-cell omics data analysis.

Nat Biotechnol. 2023-5

[9]
Methods and applications for single-cell and spatial multi-omics.

Nat Rev Genet. 2023-8

[10]
Graph deep learning for the characterization of tumour microenvironments from spatial protein profiles in tissue specimens.

Nat Biomed Eng. 2022-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索