Suppr超能文献

颅骨引擎:用于协作式锥形束计算机断层扫描(CBCT)图像分割和地标检测的多阶段卷积神经网络(CNN)框架

SkullEngine: A Multi-Stage CNN Framework for Collaborative CBCT Image Segmentation and Landmark Detection.

作者信息

Liu Qin, Deng Han, Lian Chunfeng, Chen Xiaoyang, Xiao Deqiang, Ma Lei, Chen Xu, Kuang Tianshu, Gateno Jaime, Yap Pew-Thian, Xia James J

机构信息

Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, NC, USA.

Department of Oral and Maxillofacial Surgery, Houston Methodist Hospital, TX, USA.

出版信息

Mach Learn Med Imaging. 2021 Sep;12966:606-614. doi: 10.1007/978-3-030-87589-3_62. Epub 2021 Sep 21.

Abstract

Accurate bone segmentation and landmark detection are two essential preparation tasks in computer-aided surgical planning for patients with craniomaxillofacial (CMF) deformities. Surgeons typically have to complete the two tasks manually, spending ~12 hours for each set of CBCT or ~5 hours for CT. To tackle these problems, we propose a multi-stage coarse-to-fine CNN-based framework, called SkullEngine, for high-resolution segmentation and large-scale landmark detection through a collaborative, integrated, and scalable JSD model and three segmentation and landmark detection refinement models. We evaluated our framework on a clinical dataset consisting of 170 CBCT/CT images for the task of segmenting 2 bones (midface and mandible) and detecting 175 clinically common landmarks on bones, teeth, and soft tissues. Experimental results show that SkullEngine significantly improves segmentation quality, especially in regions where the bone is thin. In addition, SkullEngine also efficiently and accurately detect all of the 175 landmarks. Both tasks were completed simultaneously within 3 minutes regardless of CBCT or CT with high segmentation quality. Currently, SkullEngine has been integrated into a clinical workflow to further evaluate its clinical efficiency.

摘要

准确的骨分割和地标检测是颅颌面(CMF)畸形患者计算机辅助手术规划中的两项基本准备任务。外科医生通常必须手动完成这两项任务,每组CBCT需要花费约12小时,CT则需要约5小时。为了解决这些问题,我们提出了一个基于卷积神经网络(CNN)的多阶段粗到细框架,称为SkullEngine,通过一个协作、集成且可扩展的联合相似性散度(JSD)模型以及三个分割和地标检测细化模型,用于高分辨率分割和大规模地标检测。我们在一个由170张CBCT/CT图像组成的临床数据集上评估了我们的框架,该数据集用于分割两块骨头(中面部和下颌骨)以及检测骨头、牙齿和软组织上的175个临床常见地标。实验结果表明,SkullEngine显著提高了分割质量,尤其是在骨头较薄的区域。此外,SkullEngine还能高效且准确地检测出所有175个地标。无论使用CBCT还是CT,两项任务都能在3分钟内同时完成,且分割质量很高。目前,SkullEngine已被集成到临床工作流程中,以进一步评估其临床效率。

相似文献

1
SkullEngine: A Multi-Stage CNN Framework for Collaborative CBCT Image Segmentation and Landmark Detection.
Mach Learn Med Imaging. 2021 Sep;12966:606-614. doi: 10.1007/978-3-030-87589-3_62. Epub 2021 Sep 21.
2
Context-guided fully convolutional networks for joint craniomaxillofacial bone segmentation and landmark digitization.
Med Image Anal. 2020 Feb;60:101621. doi: 10.1016/j.media.2019.101621. Epub 2019 Nov 23.
4
Multi-task Dynamic Transformer Network for Concurrent Bone Segmentation and Large-Scale Landmark Localization with Dental CBCT.
Med Image Comput Comput Assist Interv. 2020 Oct;12264:807-816. doi: 10.1007/978-3-030-59719-1_78. Epub 2020 Sep 29.
5
Fast and Accurate Craniomaxillofacial Landmark Detection via 3D Faster R-CNN.
IEEE Trans Med Imaging. 2021 Dec;40(12):3867-3878. doi: 10.1109/TMI.2021.3099509. Epub 2021 Nov 30.
6
Two-stage multi-task deep learning framework for simultaneous pelvic bone segmentation and landmark detection from CT images.
Int J Comput Assist Radiol Surg. 2024 Jan;19(1):97-108. doi: 10.1007/s11548-023-02976-1. Epub 2023 Jun 15.
8
Joint Craniomaxillofacial Bone Segmentation and Landmark Digitization by Context-Guided Fully Convolutional Networks.
Med Image Comput Comput Assist Interv. 2017 Sep;10434:720-728. doi: 10.1007/978-3-319-66185-8_81. Epub 2017 Sep 4.
9
Localization of Craniomaxillofacial Landmarks on CBCT Images Using 3D Mask R-CNN and Local Dependency Learning.
IEEE Trans Med Imaging. 2022 Oct;41(10):2856-2866. doi: 10.1109/TMI.2022.3174513. Epub 2022 Sep 30.

引用本文的文献

1
Deep ensemble learning-driven fully automated multi-structure segmentation for precision craniomaxillofacial surgery.
Front Bioeng Biotechnol. 2025 May 8;13:1580502. doi: 10.3389/fbioe.2025.1580502. eCollection 2025.
4
Learning with Context Encoding for Single-Stage Cranial Bone Labeling and Landmark Localization.
Med Image Comput Comput Assist Interv. 2022 Sep;13438:286-296. doi: 10.1007/978-3-031-16452-1_28. Epub 2022 Sep 16.
5
Deep learning segmentation of mandible with lower dentition from cone beam CT.
Oral Radiol. 2025 Jan;41(1):1-9. doi: 10.1007/s11282-024-00770-6. Epub 2024 Aug 14.
6
Craniomaxillofacial landmarks detection in CT scans with limited labeled data via semi-supervised learning.
Heliyon. 2024 Jul 16;10(14):e34583. doi: 10.1016/j.heliyon.2024.e34583. eCollection 2024 Jul 30.
7
Deep learning for 3D cephalometric landmarking with heterogeneous multi-center CBCT dataset.
PLoS One. 2024 Jun 25;19(6):e0305947. doi: 10.1371/journal.pone.0305947. eCollection 2024.
8
Patient-specific reference model estimation for orthognathic surgical planning.
Int J Comput Assist Radiol Surg. 2024 Jul;19(7):1439-1447. doi: 10.1007/s11548-024-03123-0. Epub 2024 Jun 13.
9
Semi or fully automatic tooth segmentation in CBCT images: a review.
PeerJ Comput Sci. 2024 Apr 19;10:e1994. doi: 10.7717/peerj-cs.1994. eCollection 2024.
10
TriConvUNeXt: A Pure CNN-Based Lightweight Symmetrical Network for Biomedical Image Segmentation.
J Imaging Inform Med. 2024 Oct;37(5):2311-2323. doi: 10.1007/s10278-024-01116-8. Epub 2024 Apr 23.

本文引用的文献

1
Multi-task Dynamic Transformer Network for Concurrent Bone Segmentation and Large-Scale Landmark Localization with Dental CBCT.
Med Image Comput Comput Assist Interv. 2020 Oct;12264:807-816. doi: 10.1007/978-3-030-59719-1_78. Epub 2020 Sep 29.
2
Automatic Localization of Landmarks in Craniomaxillofacial CBCT Images Using a Local Attention-Based Graph Convolution Network.
Med Image Comput Comput Assist Interv. 2020 Oct;12264:817-826. doi: 10.1007/978-3-030-59719-1_79. Epub 2020 Sep 29.
3
Context-guided fully convolutional networks for joint craniomaxillofacial bone segmentation and landmark digitization.
Med Image Anal. 2020 Feb;60:101621. doi: 10.1016/j.media.2019.101621. Epub 2019 Nov 23.
5
Deep Geodesic Learning for Segmentation and Anatomical Landmarking.
IEEE Trans Med Imaging. 2019 Apr;38(4):919-931. doi: 10.1109/TMI.2018.2875814. Epub 2018 Oct 12.
6
Design, development and clinical validation of computer-aided surgical simulation system for streamlined orthognathic surgical planning.
Int J Comput Assist Radiol Surg. 2017 Dec;12(12):2129-2143. doi: 10.1007/s11548-017-1585-6. Epub 2017 Apr 21.
8
A knowledge-based algorithm for automatic detection of cephalometric landmarks on CBCT images.
Int J Comput Assist Radiol Surg. 2015 Nov;10(11):1737-52. doi: 10.1007/s11548-015-1173-6. Epub 2015 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验