Upendra Roshan Reddy, Simon Richard, Linte Cristian A
Rochester Institute of Technology, Center for Imaging Science, Rochester, New York, United States.
Rochester Institute of Technology, Department of Biomedical Engineering, Rochester, New York, United States.
J Med Imaging (Bellingham). 2023 Sep;10(5):051808. doi: 10.1117/1.JMI.10.5.051808. Epub 2023 May 24.
High-resolution late gadolinium enhanced (LGE) cardiac magnetic resonance imaging (MRI) volumes are difficult to acquire due to the limitations of the maximal breath-hold time achievable by the patient. This results in anisotropic 3D volumes of the heart with high in-plane resolution, but low-through-plane resolution. Thus, we propose a 3D convolutional neural network (CNN) approach to improve the through-plane resolution of the cardiac LGE-MRI volumes.
We present a 3D CNN-based framework with two branches: a super-resolution branch to learn the mapping between low-resolution and high-resolution LGE-MRI volumes, and a gradient branch that learns the mapping between the gradient map of low-resolution LGE-MRI volumes and the gradient map of high-resolution LGE-MRI volumes. The gradient branch provides structural guidance to the CNN-based super-resolution framework. To assess the performance of the proposed CNN-based framework, we train two CNN models with and without gradient guidance, namely, dense deep back-projection network (DBPN) and enhanced deep super-resolution network. We train and evaluate our method on the 2018 atrial segmentation challenge dataset. Additionally, we also evaluate these trained models on the left atrial and scar quantification and segmentation challenge 2022 dataset to assess their generalization ability. Finally, we investigate the effect of the proposed CNN-based super-resolution framework on the 3D segmentation of the left atrium (LA) from these cardiac LGE-MRI image volumes.
Experimental results demonstrate that our proposed CNN method with gradient guidance consistently outperforms bicubic interpolation and the CNN models without gradient guidance. Furthermore, the segmentation results, evaluated using Dice score, obtained using the super-resolved images generated by our proposed method are superior to the segmentation results obtained using the images generated by bicubic interpolation () and the CNN models without gradient guidance ().
The presented CNN-based super-resolution method with gradient guidance improves the through-plane resolution of the LGE-MRI volumes and the structure guidance provided by the gradient branch can be useful to aid the 3D segmentation of cardiac chambers, such as LA, from the 3D LGE-MRI images.
由于患者可实现的最大屏气时间有限,高分辨率延迟钆增强(LGE)心脏磁共振成像(MRI)容积难以获取。这导致心脏的三维容积呈现各向异性,平面内分辨率高,但平面间分辨率低。因此,我们提出一种三维卷积神经网络(CNN)方法来提高心脏LGE-MRI容积的平面间分辨率。
我们提出一个基于三维CNN的框架,该框架有两个分支:一个超分辨率分支,用于学习低分辨率和高分辨率LGE-MRI容积之间的映射;一个梯度分支,用于学习低分辨率LGE-MRI容积的梯度图与高分辨率LGE-MRI容积的梯度图之间的映射。梯度分支为基于CNN的超分辨率框架提供结构指导。为了评估所提出的基于CNN的框架的性能,我们训练了两个有梯度引导和无梯度引导的CNN模型,即密集深度反投影网络(DBPN)和增强深度超分辨率网络。我们在2018年心房分割挑战数据集上训练和评估我们的方法。此外,我们还在2022年左心房和瘢痕定量与分割挑战数据集上评估这些训练好的模型,以评估它们的泛化能力。最后,我们研究了所提出的基于CNN的超分辨率框架对从这些心脏LGE-MRI图像容积中进行左心房(LA)三维分割的影响。
实验结果表明,我们提出的带有梯度引导的CNN方法始终优于双三次插值法和没有梯度引导的CNN模型。此外,使用我们提出的方法生成的超分辨率图像,通过Dice分数评估得到的分割结果优于使用双三次插值法生成的图像()和没有梯度引导的CNN模型()得到的分割结果。
所提出的带有梯度引导的基于CNN的超分辨率方法提高了LGE-MRI容积的平面间分辨率,并且梯度分支提供的结构指导有助于从三维LGE-MRI图像中对心脏腔室(如左心房)进行三维分割。