Suppr超能文献

基于深度学习的介入引导超声帧到容积配准。

Ultrasound Frame-to-Volume Registration via Deep Learning for Interventional Guidance.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2023 Sep;70(9):1016-1025. doi: 10.1109/TUFFC.2022.3229903. Epub 2023 Aug 29.

Abstract

Fusing intraoperative 2-D ultrasound (US) frames with preoperative 3-D magnetic resonance (MR) images for guiding interventions has become the clinical gold standard in image-guided prostate cancer biopsy. However, developing an automatic image registration system for this application is challenging because of the modality gap between US/MR and the dimensionality gap between 2-D/3-D data. To overcome these challenges, we propose a novel US frame-to-volume registration (FVReg) pipeline to bridge the dimensionality gap between 2-D US frames and 3-D US volume. The developed pipeline is implemented using deep neural networks, which are fully automatic without requiring external tracking devices. The framework consists of three major components, including one) a frame-to-frame registration network (Frame2Frame) that estimates the current frame's 3-D spatial position based on previous video context, two) a frame-to-slice correction network (Frame2Slice) adjusting the estimated frame position using the 3-D US volumetric information, and three) a similarity filtering (SF) mechanism selecting the frame with the highest image similarity with the query frame. We validated our method on a clinical dataset with 618 subjects and tested its potential on real-time 2-D-US to 3-D-MR fusion navigation tasks. The proposed FVReg achieved an average target navigation error of 1.93 mm at 5-14 fps. Our source code is publicly available at https://github.com/DIAL-RPI/Frame-to-Volume-Registration.

摘要

将术中 2D 超声 (US) 帧与术前 3D 磁共振 (MR) 图像融合用于引导介入治疗已成为图像引导前列腺癌活检的临床金标准。然而,由于 US/MR 之间的模态差距以及 2D/3D 数据之间的维度差距,开发用于此应用的自动图像配准系统具有挑战性。为了克服这些挑战,我们提出了一种新颖的 US 帧到体积配准 (FVReg) 管道,以弥合 2D US 帧和 3D US 体积之间的维度差距。所开发的管道使用深度神经网络实现,完全自动,无需外部跟踪设备。该框架由三个主要组件组成,包括:1) 帧到帧配准网络 (Frame2Frame),该网络根据先前的视频上下文估计当前帧的 3D 空间位置;2) 帧到切片校正网络 (Frame2Slice),使用 3D US 体数据集调整估计的帧位置;以及 3) 相似性过滤 (SF) 机制,选择与查询帧具有最高图像相似性的帧。我们在包含 618 名受试者的临床数据集上验证了我们的方法,并在实时 2D-US 到 3D-MR 融合导航任务上测试了其潜力。所提出的 FVReg 在 5-14 fps 时的平均目标导航误差为 1.93mm。我们的源代码可在 https://github.com/DIAL-RPI/Frame-to-Volume-Registration 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验