文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于从三维超声图像中分割胎盘的交互式分割模型

Interactive Segmentation Model for Placenta Segmentation from 3D Ultrasound images.

作者信息

Li Hao, Oguz Baris, Arenas Gabriel, Yao Xing, Wang Jiacheng, Pouch Alison, Byram Brett, Schwartz Nadav, Oguz Ipek

机构信息

Vanderbilt University.

University of Pennsylvania.

出版信息

Simpl Med Ultrasound (2024). 2025;15186:132-142. doi: 10.1007/978-3-031-73647-6_13. Epub 2024 Oct 5.


DOI:10.1007/978-3-031-73647-6_13
PMID:40463734
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12128789/
Abstract

Placenta volume measurement from 3D ultrasound images is critical for predicting pregnancy outcomes, and manual annotation is the gold standard. However, such manual annotation is expensive and time consuming. Automated segmentation algorithms can often successfully segment the placenta, but these methods may not consistently produce robust segmentations suitable for practical use. Recently, inspired by the Segment Anything Model (SAM), deep learning-based interactive segmentation models have been widely applied in the medical imaging domain. These models produce a segmentation from visual prompts provided to indicate the target region, which may offer a feasible solution for practical use. However, none of these models are specifically designed for interactively segmenting 3D ultrasound images, which remain challenging due to the inherent noise of this modality. In this paper, we evaluate publicly available state-of-the-art 3D interactive segmentation models in contrast to a human-in-the-loop approach for the placenta segmentation task. The Dice score, normalized surface Dice, averaged symmetric surface distance, and 95-percent Hausdorff distance are used as evaluation metrics. We consider a Dice score of 0.95 a successful segmentation. Our results indicate that the human-in-the-loop segmentation model reaches this standard. Moreover, we assess the efficiency of the human-in-the-loop model as a function of the amount of prompts. Our results demonstrate that the human-in-the-loop model is both effective and efficient for interactive placenta segmentation. The code is available at https://github.com/MedICL-VU/PRISM-placenta.

摘要

从三维超声图像中测量胎盘体积对于预测妊娠结局至关重要,而人工标注是金标准。然而,这种人工标注成本高且耗时。自动分割算法通常能够成功分割胎盘,但这些方法可能无法始终如一地生成适用于实际应用的稳健分割结果。最近,受分割一切模型(SAM)的启发,基于深度学习的交互式分割模型已在医学成像领域得到广泛应用。这些模型根据提供的视觉提示生成分割结果以指示目标区域,这可能为实际应用提供一种可行的解决方案。然而,这些模型都不是专门为交互式分割三维超声图像而设计的,由于这种成像方式固有的噪声,三维超声图像的分割仍然具有挑战性。在本文中,我们评估了公开可用的最先进的三维交互式分割模型,并将其与用于胎盘分割任务的人工参与方法进行对比。使用骰子系数、归一化表面骰子系数、平均对称表面距离和95% 豪斯多夫距离作为评估指标。我们将骰子系数达到0.95视为成功分割。我们的结果表明,人工参与分割模型达到了这一标准。此外,我们评估了人工参与模型作为提示量函数的效率。我们的结果表明,人工参与模型对于交互式胎盘分割既有效又高效。代码可在https://github.com/MedICL-VU/PRISM-placenta获取。

相似文献

[1]
Interactive Segmentation Model for Placenta Segmentation from 3D Ultrasound images.

Simpl Med Ultrasound (2024). 2025

[2]
PRISM Lite: A lightweight model for interactive 3D placenta segmentation in ultrasound.

Proc SPIE Int Soc Opt Eng. 2025-2

[3]
PRISM: A Promptable and Robust Interactive Segmentation Model with Visual Prompts.

Med Image Comput Comput Assist Interv. 2024-10

[4]
FNPC-SAM: Uncertainty-Guided False Negative/Positive Control for SAM on Noisy Medical Images.

Proc SPIE Int Soc Opt Eng. 2024-2

[5]
Sam2Rad: A segmentation model for medical images with learnable prompts.

Comput Biol Med. 2025-3

[6]
Segment anything model for medical image analysis: An experimental study.

Med Image Anal. 2023-10

[7]
PROMISE: PROMPT-DRIVEN 3D MEDICAL IMAGE SEGMENTATION USING PRETRAINED IMAGE FOUNDATION MODELS.

Proc IEEE Int Symp Biomed Imaging. 2024-5

[8]
Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images.

Med Phys. 2020-6

[9]
Robust segmentation of arterial walls in intravascular ultrasound images using Dual Path U-Net.

Ultrasonics. 2019-3-23

[10]
MA-SAM: Modality-agnostic SAM adaptation for 3D medical image segmentation.

Med Image Anal. 2024-12

引用本文的文献

[1]
PRISM Lite: A lightweight model for interactive 3D placenta segmentation in ultrasound.

Proc SPIE Int Soc Opt Eng. 2025-2

本文引用的文献

[1]
PRISM: A Promptable and Robust Interactive Segmentation Model with Visual Prompts.

Med Image Comput Comput Assist Interv. 2024-10

[2]
PROMISE: PROMPT-DRIVEN 3D MEDICAL IMAGE SEGMENTATION USING PRETRAINED IMAGE FOUNDATION MODELS.

Proc IEEE Int Symp Biomed Imaging. 2024-5

[3]
3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation.

Med Image Anal. 2024-12

[4]
FNPC-SAM: Uncertainty-Guided False Negative/Positive Control for SAM on Noisy Medical Images.

Proc SPIE Int Soc Opt Eng. 2024-2

[5]
Segment anything in medical images.

Nat Commun. 2024-1-22

[6]
A review on deep-learning algorithms for fetal ultrasound-image analysis.

Med Image Anal. 2023-1

[7]
Placenta segmentation in ultrasound imaging: Addressing sources of uncertainty and limited field-of-view.

Med Image Anal. 2023-1

[8]
Shadow-Consistent Semi-Supervised Learning for Prostate Ultrasound Segmentation.

IEEE Trans Med Imaging. 2022-6

[9]
Fully Automated Placental Volume Quantification From 3D Ultrasound for Prediction of Small-for-Gestational-Age Infants.

J Ultrasound Med. 2022-6

[10]
Novel Autosegmentation Spatial Similarity Metrics Capture the Time Required to Correct Segmentations Better Than Traditional Metrics in a Thoracic Cavity Segmentation Workflow.

J Digit Imaging. 2021-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索