Li Hao, Oguz Baris, Arenas Gabriel, Yao Xing, Wang Jiacheng, Pouch Alison, Byram Brett, Schwartz Nadav, Oguz Ipek
Vanderbilt University.
University of Pennsylvania.
Simpl Med Ultrasound (2024). 2025;15186:132-142. doi: 10.1007/978-3-031-73647-6_13. Epub 2024 Oct 5.
Placenta volume measurement from 3D ultrasound images is critical for predicting pregnancy outcomes, and manual annotation is the gold standard. However, such manual annotation is expensive and time consuming. Automated segmentation algorithms can often successfully segment the placenta, but these methods may not consistently produce robust segmentations suitable for practical use. Recently, inspired by the Segment Anything Model (SAM), deep learning-based interactive segmentation models have been widely applied in the medical imaging domain. These models produce a segmentation from visual prompts provided to indicate the target region, which may offer a feasible solution for practical use. However, none of these models are specifically designed for interactively segmenting 3D ultrasound images, which remain challenging due to the inherent noise of this modality. In this paper, we evaluate publicly available state-of-the-art 3D interactive segmentation models in contrast to a human-in-the-loop approach for the placenta segmentation task. The Dice score, normalized surface Dice, averaged symmetric surface distance, and 95-percent Hausdorff distance are used as evaluation metrics. We consider a Dice score of 0.95 a successful segmentation. Our results indicate that the human-in-the-loop segmentation model reaches this standard. Moreover, we assess the efficiency of the human-in-the-loop model as a function of the amount of prompts. Our results demonstrate that the human-in-the-loop model is both effective and efficient for interactive placenta segmentation. The code is available at https://github.com/MedICL-VU/PRISM-placenta.
从三维超声图像中测量胎盘体积对于预测妊娠结局至关重要,而人工标注是金标准。然而,这种人工标注成本高且耗时。自动分割算法通常能够成功分割胎盘,但这些方法可能无法始终如一地生成适用于实际应用的稳健分割结果。最近,受分割一切模型(SAM)的启发,基于深度学习的交互式分割模型已在医学成像领域得到广泛应用。这些模型根据提供的视觉提示生成分割结果以指示目标区域,这可能为实际应用提供一种可行的解决方案。然而,这些模型都不是专门为交互式分割三维超声图像而设计的,由于这种成像方式固有的噪声,三维超声图像的分割仍然具有挑战性。在本文中,我们评估了公开可用的最先进的三维交互式分割模型,并将其与用于胎盘分割任务的人工参与方法进行对比。使用骰子系数、归一化表面骰子系数、平均对称表面距离和95% 豪斯多夫距离作为评估指标。我们将骰子系数达到0.95视为成功分割。我们的结果表明,人工参与分割模型达到了这一标准。此外,我们评估了人工参与模型作为提示量函数的效率。我们的结果表明,人工参与模型对于交互式胎盘分割既有效又高效。代码可在https://github.com/MedICL-VU/PRISM-placenta获取。
Simpl Med Ultrasound (2024). 2025
Proc SPIE Int Soc Opt Eng. 2025-2
Med Image Comput Comput Assist Interv. 2024-10
Proc SPIE Int Soc Opt Eng. 2024-2
Comput Biol Med. 2025-3
Med Image Anal. 2023-10
Proc IEEE Int Symp Biomed Imaging. 2024-5
Med Image Anal. 2024-12
Proc SPIE Int Soc Opt Eng. 2025-2
Med Image Comput Comput Assist Interv. 2024-10
Proc IEEE Int Symp Biomed Imaging. 2024-5
Med Image Anal. 2024-12
Proc SPIE Int Soc Opt Eng. 2024-2
Nat Commun. 2024-1-22
Med Image Anal. 2023-1
IEEE Trans Med Imaging. 2022-6