Suppr超能文献

研究 COVID-19 封锁期间的城市声景:一种预测性声景建模方法。

Investigating urban soundscapes of the COVID-19 lockdown: A predictive soundscape modeling approach.

机构信息

Institute for Environmental Design and Engineering, The Bartlett, University College London, London, United Kingdom.

出版信息

J Acoust Soc Am. 2021 Dec;150(6):4474. doi: 10.1121/10.0008928.

Abstract

The unprecedented lockdowns resulting from COVID-19 in spring 2020 triggered changes in human activities in public spaces. A predictive modeling approach was developed to characterize the changes in the perception of the sound environment when people could not be surveyed. Building on a database of soundscape questionnaires (N = 1,136) and binaural recordings (N = 687) collected in 13 locations across London and Venice during 2019, new recordings (N = 571) were made in the same locations during the 2020 lockdowns. Using these 30-s-long recordings, linear multilevel models were developed to predict the soundscape pleasantness ( R=0.85) and eventfulness ( R=0.715) during the lockdown and compare the changes for each location. The performance was above average for comparable models. An online listening study also investigated the change in the sound sources within the spaces. Results indicate (1) human sounds were less dominant and natural sounds more dominant across all locations; (2) contextual information is important for predicting pleasantness but not for eventfulness; (3) perception shifted toward less eventful soundscapes and to more pleasant soundscapes for previously traffic-dominated locations but not for human- and natural-dominated locations. This study demonstrates the usefulness of predictive modeling and the importance of considering contextual information when discussing the impact of sound level reductions on the soundscape.

摘要

2020 年春季 COVID-19 疫情导致前所未有的封锁,这引发了公共空间中人类活动的变化。本研究开发了一种预测建模方法,以描述人们无法进行调查时对声环境感知的变化。该方法基于 2019 年在伦敦和威尼斯 13 个地点收集的声景问卷(N=1136)和双耳录音(N=687)数据库,在 2020 年封锁期间在相同地点进行了新的录音(N=571)。使用这些时长为 30 秒的录音,开发了线性多层模型来预测封锁期间的声景宜人度( R=0.85)和事件丰富度( R=0.715),并比较了每个地点的变化。对于可比模型,该方法的性能优于平均水平。一项在线听力研究还调查了空间内声源的变化。结果表明:(1)在所有地点,人类声音的主导性降低,自然声音的主导性增加;(2)语境信息对于预测宜人度很重要,但对于预测事件丰富度则不重要;(3)对于以前以交通为主导的地点,感知倾向于不那么丰富的声景和更宜人的声景,但对于以人类和自然为主导的地点则并非如此。本研究证明了预测建模的有用性,以及在讨论声音水平降低对声景的影响时考虑语境信息的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb66/8730329/946a44e8dfe0/JASMAN-000150-004474_1-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验