Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, North Carolina.
Department of Methodology and Statistics, Utrecht University, Utrecht, The Netherlands.
Biometrics. 2023 Jun;79(2):1293-1305. doi: 10.1111/biom.13692. Epub 2022 May 23.
Pragmatic trials evaluating health care interventions often adopt cluster randomization due to scientific or logistical considerations. Systematic reviews have shown that coprimary endpoints are not uncommon in pragmatic trials but are seldom recognized in sample size or power calculations. While methods for power analysis based on K ( ) binary coprimary endpoints are available for cluster randomized trials (CRTs), to our knowledge, methods for continuous coprimary endpoints are not yet available. Assuming a multivariate linear mixed model (MLMM) that accounts for multiple types of intraclass correlation coefficients among the observations in each cluster, we derive the closed-form joint distribution of K treatment effect estimators to facilitate sample size and power determination with different types of null hypotheses under equal cluster sizes. We characterize the relationship between the power of each test and different types of correlation parameters. We further relax the equal cluster size assumption and approximate the joint distribution of the K treatment effect estimators through the mean and coefficient of variation of cluster sizes. Our simulation studies with a finite number of clusters indicate that the predicted power by our method agrees well with the empirical power, when the parameters in the MLMM are estimated via the expectation-maximization algorithm. An application to a real CRT is presented to illustrate the proposed method.
评价卫生保健干预措施的实用临床试验通常由于科学或后勤方面的考虑而采用聚类随机化。系统评价表明,主要次要结局在实用试验中并不少见,但在样本量或功效计算中很少被认识到。虽然已有基于 K( )二元主要次要结局的集群随机试验功效分析方法(CRTs),但据我们所知,针对连续主要次要结局的方法尚不存在。假设存在一个多变量线性混合模型(MLMM),该模型考虑了每个集群中观察值之间的多种类型的组内相关系数,我们推导出 K 个治疗效果估计值的闭式联合分布,以方便在相等的集群大小下使用不同类型的零假设来确定样本量和功效。我们描述了每个检验的功效与不同类型的相关参数之间的关系。我们进一步放宽了相等的集群大小假设,并通过集群大小的平均值和变异系数来近似 K 个治疗效果估计值的联合分布。我们对有限数量的集群进行的模拟研究表明,当通过期望最大化算法估计 MLMM 中的参数时,我们的方法预测的功效与经验功效非常吻合。通过一个真实的 CRT 应用实例来说明所提出的方法。