Neumayer Sabine M, Si Mengwei, Li Junkang, Liao Pai-Ying, Tao Lei, O'Hara Andrew, Pantelides Sokrates T, Ye Peide D, Maksymovych Petro, Balke Nina
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, 37831 Tennessee, United States.
Birck Nanotechnology Center and School of Electrical and Computer Engineering, Purdue University, West Lafayette, 47907 Indiana, United States.
ACS Appl Mater Interfaces. 2022 Jan 19;14(2):3018-3026. doi: 10.1021/acsami.1c18683. Epub 2022 Jan 5.
The van der Waals layered material CuInPS features interesting functional behavior, including the existence of four uniaxial polarization states, polarization reversal against the electric field through Cu ion migration, a negative-capacitance regime, and reversible extraction of Cu ions. At the heart of these characteristics lies the high mobility of Cu ions, which also determines the spontaneous polarization. Therefore, Cu migration across the lattice results in unusual ferroelectric behavior. Here, we demonstrate how the interplay of polar and ionic properties provides a path to ionically controlled ferroelectric behavior, achieved by applying selected DC voltage pulses and subsequently probing ferroelectric switching during fast triangular voltage sweeps. Using current measurements and theoretical calculations, we observe that increasing DC pulse duration results in higher ionic currents, the buildup of an internal electric field that shifts polarization loops, and an increase in total switchable polarization by ∼50% due to the existence of a high polarization phase which is stabilized by the internal electric field. Apart from tuning ferroelectric behavior by selected square pulses, hysteretic polarization switching can even be entirely deactivated and reactivated, resulting in three-state systems where polarization switching is either inhibited or can be performed in two different directions.
范德华层状材料CuInPS具有有趣的功能特性,包括存在四种单轴极化状态、通过铜离子迁移实现电场作用下的极化反转、负电容状态以及铜离子的可逆提取。这些特性的核心在于铜离子的高迁移率,它也决定了自发极化。因此,铜在晶格中的迁移导致了异常的铁电行为。在此,我们展示了极性和离子特性的相互作用如何为离子控制的铁电行为提供一条途径,这是通过施加选定的直流电压脉冲并随后在快速三角电压扫描期间探测铁电开关来实现的。通过电流测量和理论计算,我们观察到增加直流脉冲持续时间会导致更高的离子电流、内部电场的建立(该电场会使极化回线发生偏移)以及由于存在由内部电场稳定的高极化相而使可切换的总极化增加约50%。除了通过选定的方脉冲调节铁电行为外,滞后极化开关甚至可以完全停用和重新激活,从而形成三态系统,其中极化开关要么被抑制,要么可以在两个不同方向上进行。