Spiller Erin R, Ung Nolan, Kim Seungil, Patsch Katherin, Lau Roy, Strelez Carly, Doshi Chirag, Choung Sarah, Choi Brandon, Juarez Rosales Edwin Francisco, Lenz Heinz-Josef, Matasci Naim, Mumenthaler Shannon M
Lawrence J. Ellison Institute for Transformative Medicine of USC, Los Angeles, CA, United States.
Department of Medicine, University of California San Diego, La Jolla, CA, United States.
Front Oncol. 2021 Dec 21;11:771173. doi: 10.3389/fonc.2021.771173. eCollection 2021.
Three-quarters of compounds that enter clinical trials fail to make it to market due to safety or efficacy concerns. This statistic strongly suggests a need for better screening methods that result in improved translatability of compounds during the preclinical testing period. Patient-derived organoids have been touted as a promising 3D preclinical model system to impact the drug discovery pipeline, particularly in oncology. However, assessing drug efficacy in such models poses its own set of challenges, and traditional cell viability readouts fail to leverage some of the advantages that the organoid systems provide. Consequently, phenotypically evaluating complex 3D cell culture models remains difficult due to intra- and inter-patient organoid size differences, cellular heterogeneities, and temporal response dynamics. Here, we present an image-based high-content assay that provides object level information on 3D patient-derived tumor organoids without the need for vital dyes. Leveraging computer vision, we segment and define organoids as independent regions of interest and obtain morphometric and textural information per organoid. By acquiring brightfield images at different timepoints in a robust, non-destructive manner, we can track the dynamic response of individual organoids to various drugs. Furthermore, to simplify the analysis of the resulting large, complex data files, we developed a web-based data visualization tool, the Organoizer, that is available for public use. Our work demonstrates the feasibility and utility of using imaging, computer vision and machine learning to determine the vital status of individual patient-derived organoids without relying upon vital dyes, thus taking advantage of the characteristics offered by this preclinical model system.
进入临床试验的化合物中有四分之三由于安全性或有效性问题而未能上市。这一统计数据强烈表明需要更好的筛选方法,以提高化合物在临床前测试阶段的可转化性。患者来源的类器官被吹捧为一种有前景的三维临床前模型系统,可影响药物发现流程,尤其是在肿瘤学领域。然而,在这类模型中评估药物疗效也带来了一系列自身的挑战,而且传统的细胞活力读数未能利用类器官系统所提供的一些优势。因此,由于患者内和患者间类器官大小差异、细胞异质性以及时间反应动态性,对复杂三维细胞培养模型进行表型评估仍然困难。在此,我们提出一种基于图像的高内涵分析方法,该方法无需使用活性染料就能提供关于三维患者来源肿瘤类器官的对象级信息。利用计算机视觉,我们将类器官分割并定义为独立的感兴趣区域,并获取每个类器官的形态测量和纹理信息。通过以稳健、无损的方式在不同时间点获取明场图像,我们可以跟踪单个类器官对各种药物的动态反应。此外,为了简化对由此产生的大量复杂数据文件的分析,我们开发了一个基于网络的数据可视化工具Organoizer,可供公众使用。我们的工作证明了利用成像、计算机视觉和机器学习来确定单个患者来源类器官的存活状态而不依赖活性染料的可行性和实用性,从而利用了这个临床前模型系统所提供的特性。