Suppr超能文献

用于在胸部X光片上检测和分级新型冠状病毒肺炎的多种开源深度学习模型的评估

Evaluation of multiple open-source deep learning models for detecting and grading COVID-19 on chest radiographs.

作者信息

Risman Alexander, Trelles Miguel, Denning David W

机构信息

Realize, Chicago, Illinois, United States.

Clinica Delgado, Radiology Department, Lima, Peru.

出版信息

J Med Imaging (Bellingham). 2021 Nov;8(6):064502. doi: 10.1117/1.JMI.8.6.064502. Epub 2021 Dec 21.

Abstract

: Chest x-rays are complex to report accurately. Viral pneumonia is often subtle in its radiological appearance. In the context of the COVID-19 pandemic, rapid triage of cases and exclusion of other pathologies with artificial intelligence (AI) can assist over-stretched radiology departments. We aim to validate three open-source AI models on an external test set. : We tested three open-source deep learning models, COVID-Net, COVIDNet-S-GEO, and CheXNet for their ability to detect COVID-19 pneumonia and to determine its severity using 129 chest x-rays from two different vendors Phillips and Agfa. : All three models detected COVID-19 pneumonia (AUCs from 0.666 to 0.778). Only the COVID Net-S-GEO and CheXNet models performed well on severity scoring (Pearson's 0.927 and 0.833, respectively); COVID-Net only performed well at either task on images taken with a Philips machine (AUC 0.735) and not an Agfa machine (AUC 0.598). : Chest x-ray triage using existing machine learning models for COVID-19 pneumonia can be successfully implemented using open-source AI models. Evaluation of the model using local x-ray machines and protocols is highly recommended before implementation to avoid vendor or protocol dependent bias.

摘要

准确报告胸部X光片很复杂。病毒性肺炎的放射学表现往往很隐匿。在新冠疫情背景下,利用人工智能(AI)对病例进行快速分诊并排除其他病变,有助于缓解不堪重负的放射科压力。我们旨在在外部测试集上验证三种开源AI模型。

我们测试了三种开源深度学习模型,即COVID-Net、COVIDNet-S-GEO和CheXNet,利用来自飞利浦和爱克发两家不同供应商的129张胸部X光片,检测新冠肺炎并确定其严重程度的能力。

所有三种模型都能检测出新冠肺炎(曲线下面积[AUC]从0.666到0.778)。只有COVID Net-S-GEO和CheXNet模型在严重程度评分方面表现良好(皮尔逊相关系数分别为0.927和0.833);COVID-Net仅在用飞利浦机器拍摄的图像上,在两项任务中的任一项上表现良好(AUC为0.735),而在用爱克发机器拍摄的图像上则不然(AUC为0.598)。

使用开源AI模型可以成功实现利用现有机器学习模型对新冠肺炎进行胸部X光分诊。在实施之前,强烈建议使用本地X光机和方案对模型进行评估,以避免因供应商或方案不同而产生偏差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c47a/8734487/3da352a8fdde/JMI-008-064502-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验