Suppr超能文献

一个人工智能深度学习平台通过读取胸部X光图像,对新冠肺炎肺炎实现了高诊断准确率。

An artificial intelligence deep learning platform achieves high diagnostic accuracy for Covid-19 pneumonia by reading chest X-ray images.

作者信息

Li Dongguang, Li Shaoguang

机构信息

Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.

出版信息

iScience. 2022 Apr 15;25(4):104031. doi: 10.1016/j.isci.2022.104031. Epub 2022 Mar 6.

Abstract

The coronavirus disease of 2019 (Covid-19) causes deadly lung infections (pneumonia). Accurate clinical diagnosis of Covid-19 is essential for guiding treatment. Covid-19 RNA test does not reflect clinical features and severity of the disease. Pneumonia in Covid-19 patients could be caused by non-Covid-19 organisms and distinguishing Covid-19 pneumonia from non-Covid-19 pneumonia is critical. Chest X-ray detects pneumonia, but a high diagnostic accuracy is difficult to achieve. We develop an artificial intelligence-based (AI) deep learning method with a high diagnostic accuracy for Covid-19 pneumonia. We analyzed 10,182 chest X-ray images of healthy individuals, bacterial pneumonia. and viral pneumonia (Covid-19 and non-Covid-19) to build and test AI models. Among viral pneumonia, diagnostic accuracy for Covid-19 reaches 99.95%. High diagnostic accuracy is also achieved for distinguishing Covid-19 pneumonia from bacterial pneumonia (99.85% accuracy) or normal lung images (100% accuracy). Our AI models are accurate for clinical diagnosis of Covid-19 pneumonia by reading solely chest X-ray images.

摘要

2019年冠状病毒病(Covid-19)可引发致命的肺部感染(肺炎)。准确的Covid-19临床诊断对于指导治疗至关重要。Covid-19 RNA检测并不能反映该疾病的临床特征和严重程度。Covid-19患者的肺炎可能由非Covid-19病原体引起,区分Covid-19肺炎和非Covid-19肺炎至关重要。胸部X光可检测出肺炎,但难以实现高诊断准确率。我们开发了一种基于人工智能(AI)的深度学习方法,用于诊断Covid-19肺炎,具有很高的诊断准确率。我们分析了10182张健康个体、细菌性肺炎和病毒性肺炎(Covid-19和非Covid-19)的胸部X光图像,以构建和测试AI模型。在病毒性肺炎中,对Covid-19的诊断准确率达到99.95%。在区分Covid-19肺炎与细菌性肺炎(准确率99.85%)或正常肺部图像(准确率100%)方面也实现了高诊断准确率。我们的AI模型仅通过读取胸部X光图像就能准确诊断Covid-19肺炎。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/156e/8956808/eb547cdf9094/fx1.jpg

相似文献

2
Machine Learning Model Applied on Chest X-Ray Images Enables Automatic Detection of COVID-19 Cases with High Accuracy.
Int J Gen Med. 2021 Aug 28;14:4923-4931. doi: 10.2147/IJGM.S325609. eCollection 2021.
3
Deep Residual Neural Network for COVID-19 Detection from Chest X-ray Images.
SN Comput Sci. 2022;3(2):169. doi: 10.1007/s42979-022-01067-3. Epub 2022 Feb 21.
7
"Fast deep learning computer-aided diagnosis of COVID-19 based on digital chest x-ray images".
Appl Intell (Dordr). 2021;51(5):2890-2907. doi: 10.1007/s10489-020-02076-6. Epub 2020 Nov 28.
8
Using Artificial Intelligence for COVID-19 Chest X-ray Diagnosis.
Fed Pract. 2020 Sep;37(9):398-404. doi: 10.12788/fp.0045.
10
Automated diagnosis and prognosis of COVID-19 pneumonia from initial ER chest X-rays using deep learning.
BMC Infect Dis. 2022 Jul 21;22(1):637. doi: 10.1186/s12879-022-07617-7.

引用本文的文献

1
Deep Learning-Based Diagnosis of Lumbar Spondylolisthesis Using X-Ray Imaging.
Diagnostics (Basel). 2025 Aug 12;15(16):2015. doi: 10.3390/diagnostics15162015.
3
DLAAD-deep learning algorithms assisted diagnosis of chest disease using radiographic medical images.
Front Med (Lausanne). 2025 Mar 7;11:1511389. doi: 10.3389/fmed.2024.1511389. eCollection 2024.
4
Automatic detection of pleural line and lung sliding in lung ultrasonography using convolutional neural networks.
Heliyon. 2024 Jul 24;10(15):e34700. doi: 10.1016/j.heliyon.2024.e34700. eCollection 2024 Aug 15.
6
Diagnosis of Chest Pneumonia with X-ray Images Based on Graph Reasoning.
Diagnostics (Basel). 2023 Jun 20;13(12):2125. doi: 10.3390/diagnostics13122125.
8
A pre-trained convolutional neural network with optimized capsule networks for chest X-rays COVID-19 diagnosis.
Cluster Comput. 2023;26(2):1389-1403. doi: 10.1007/s10586-022-03703-2. Epub 2022 Aug 23.
9
Screening Lung Diseases Using Cascaded Feature Generation and Selection Strategies.
Healthcare (Basel). 2022 Jul 14;10(7):1313. doi: 10.3390/healthcare10071313.

本文引用的文献

2
Initial chest radiograph scores inform COVID-19 status, intensive care unit admission and need for mechanical ventilation.
Clin Radiol. 2021 Jun;76(6):473.e1-473.e7. doi: 10.1016/j.crad.2021.02.005. Epub 2021 Feb 18.
3
Genetic variants are identified to increase risk of COVID-19 related mortality from UK Biobank data.
Hum Genomics. 2021 Feb 3;15(1):10. doi: 10.1186/s40246-021-00306-7.
4
New variant of SARS-CoV-2 in UK causes surge of COVID-19.
Lancet Respir Med. 2021 Feb;9(2):e20-e21. doi: 10.1016/S2213-2600(21)00005-9. Epub 2021 Jan 5.
5
Emergence of a new SARS-CoV-2 variant in the UK.
J Infect. 2021 Apr;82(4):e27-e28. doi: 10.1016/j.jinf.2020.12.024. Epub 2020 Dec 28.
9
Development and evaluation of an artificial intelligence system for COVID-19 diagnosis.
Nat Commun. 2020 Oct 9;11(1):5088. doi: 10.1038/s41467-020-18685-1.
10
Predicting COVID-19 Pneumonia Severity on Chest X-ray With Deep Learning.
Cureus. 2020 Jul 28;12(7):e9448. doi: 10.7759/cureus.9448.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验