Suppr超能文献

韧带再生工程:使用台式编织机编织可扩展且可调谐的生物工程韧带

Ligament Regenerative Engineering: Braiding Scalable and Tunable Bioengineered Ligaments Using a Bench-Top Braiding Machine.

作者信息

Mengsteab Paulos Y, Freeman Joseph, Barajaa Mohammed A, Nair Lakshmi S, Laurencin Cato T

机构信息

Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030, USA.

Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, CT 06030, USA.

出版信息

Regen Eng Transl Med. 2021 Dec;7(4):524-532. doi: 10.1007/s40883-020-00178-8. Epub 2020 Oct 6.

Abstract

Anterior cruciate ligament (ACL) injuries are common sports injuries that typically require surgical intervention. Autografts and allografts are used to replace damaged ligaments. The drawbacks of autografts and allografts, which include donor site morbidity and variability in quality, have spurred research in the development of bioengineered ligaments. Herein, the design and development of a cost-effective bench-top 3D braiding machine that fabricates scalable and tunable bioengineered ligaments is described. It was demonstrated that braiding angle and picks per inch can be controlled with the bench-top braiding machine. Pore sizes within the reported range needed for vascularization and bone regeneration are demonstrated. By considering a one-to-one linear relationship between cross-sectional area and peak load, the bench-top braiding machine can theoretically fabricate bioengineered ligaments with a peak load that is 9× greater than the human ACL. This bench-top braiding machine is generalizable to all types of yarns and may be used for regenerative engineering applications.

摘要

前交叉韧带(ACL)损伤是常见的运动损伤,通常需要手术干预。自体移植物和异体移植物用于替换受损韧带。自体移植物和异体移植物的缺点,包括供体部位发病率和质量变异性,促使人们对生物工程韧带的开发进行研究。本文描述了一种经济高效的台式3D编织机的设计与开发,该编织机可制造可扩展且可调的生物工程韧带。结果表明,台式编织机可以控制编织角度和每英寸的纬纱数。展示了血管化和骨再生所需的报告范围内的孔径。通过考虑横截面积与峰值负荷之间的一对一线性关系,台式编织机理论上可以制造出峰值负荷比人类ACL大9倍的生物工程韧带。这种台式编织机可推广到所有类型的纱线,并可用于再生工程应用。

相似文献

1
Ligament Regenerative Engineering: Braiding Scalable and Tunable Bioengineered Ligaments Using a Bench-Top Braiding Machine.
Regen Eng Transl Med. 2021 Dec;7(4):524-532. doi: 10.1007/s40883-020-00178-8. Epub 2020 Oct 6.
2
Evaluation of a bioengineered ACL matrix's osteointegration with BMP-2 supplementation.
PLoS One. 2020 Jan 7;15(1):e0227181. doi: 10.1371/journal.pone.0227181. eCollection 2020.
3
Mechanically superior matrices promote osteointegration and regeneration of anterior cruciate ligament tissue in rabbits.
Proc Natl Acad Sci U S A. 2020 Nov 17;117(46):28655-28666. doi: 10.1073/pnas.2012347117. Epub 2020 Nov 3.
4
Mechanical and fatigue behaviour of artificial ligaments (ALs).
J Mech Behav Biomed Mater. 2022 Feb;126:105063. doi: 10.1016/j.jmbbm.2021.105063. Epub 2021 Dec 27.
5
3D-Braided Poly-ε-Caprolactone-Based Scaffolds for Ligament Tissue Engineering.
J Funct Biomater. 2022 Nov 8;13(4):230. doi: 10.3390/jfb13040230.
6
Osteointegration of a Novel Silk Fiber-Based ACL Scaffold by Formation of a Ligament-Bone Interface.
Am J Sports Med. 2019 Mar;47(3):620-627. doi: 10.1177/0363546518818792. Epub 2019 Jan 17.
9
ACL autograft reconstruction revisions with tendon allografts: Possibilities and outcomes. A one-year follow-up of 39 patients.
Orthop Traumatol Surg Res. 2022 May;108(3):102832. doi: 10.1016/j.otsr.2021.102832. Epub 2021 Feb 5.
10
Anterior Cruciate Ligament: Structure, Injuries and Regenerative Treatments.
Adv Exp Med Biol. 2015;881:161-86. doi: 10.1007/978-3-319-22345-2_10.

引用本文的文献

3
Development of porcine skeletal muscle extracellular matrix-derived hydrogels with improved properties and low immunogenicity.
Proc Natl Acad Sci U S A. 2024 May 7;121(19):e2322822121. doi: 10.1073/pnas.2322822121. Epub 2024 Apr 30.
4
Research progress of procyanidins in repairing cartilage injury after anterior cruciate ligament tear.
Heliyon. 2024 Feb 18;10(4):e26070. doi: 10.1016/j.heliyon.2024.e26070. eCollection 2024 Feb 29.
6
Hyaluronic acid-British anti-Lewisite as a safer chelation therapy for the treatment of arthroplasty-related metallosis.
Proc Natl Acad Sci U S A. 2023 Nov 7;120(45):e2309156120. doi: 10.1073/pnas.2309156120. Epub 2023 Oct 30.
7
3D-Braided Poly-ε-Caprolactone-Based Scaffolds for Ligament Tissue Engineering.
J Funct Biomater. 2022 Nov 8;13(4):230. doi: 10.3390/jfb13040230.
9
Biodegradable Polyphosphazenes for Regenerative Engineering.
J Mater Res. 2022 Apr;37(8):1417-1428. doi: 10.1557/s43578-022-00551-z. Epub 2022 Apr 18.
10
Stromal Vascular Fraction for Osteoarthritis of the Knee Regenerative Engineering.
Regen Eng Transl Med. 2022 Jun;8(2):210-224. doi: 10.1007/s40883-021-00226-x. Epub 2021 Aug 11.

本文引用的文献

2
Evaluation of a bioengineered ACL matrix's osteointegration with BMP-2 supplementation.
PLoS One. 2020 Jan 7;15(1):e0227181. doi: 10.1371/journal.pone.0227181. eCollection 2020.
3
Synthesis and characterization of polycaprolactone for anterior cruciate ligament regeneration.
Mater Sci Eng C Mater Biol Appl. 2017 Feb 1;71:820-826. doi: 10.1016/j.msec.2016.10.071. Epub 2016 Oct 29.
4
The past, present and future of ligament regenerative engineering.
Regen Med. 2016 Dec;11(8):871-881. doi: 10.2217/rme-2016-0125. Epub 2016 Nov 23.
5
A Novel Silk Fiber-Based Scaffold for Regeneration of the Anterior Cruciate Ligament: Histological Results From a Study in Sheep.
Am J Sports Med. 2016 Jun;44(6):1547-57. doi: 10.1177/0363546516631954. Epub 2016 Mar 8.
6
Textile Technologies and Tissue Engineering: A Path Toward Organ Weaving.
Adv Healthc Mater. 2016 Apr 6;5(7):751-66. doi: 10.1002/adhm.201500517. Epub 2016 Feb 29.
7
Recent advances in bone tissue engineering scaffolds.
Trends Biotechnol. 2012 Oct;30(10):546-54. doi: 10.1016/j.tibtech.2012.07.005. Epub 2012 Aug 30.
9
Graft selection in anterior cruciate ligament surgery.
Orthopedics. 2010 Nov;33(11):832. doi: 10.3928/01477447-20100924-20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验