文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Mechanical, Biological and In Vitro Degradation Investigation of Braided Scaffolds for Tendon and Ligament Tissue Engineering Based on Different Polycaprolactone Materials with Chitosan-Graft-PCL Surface Modification.

作者信息

Emonts Caroline, Bauer Benedict, Pitts Johannes, Roger Yvonne, Hoffmann Andrea, Menzel Henning, Gries Thomas

机构信息

Institut für Textiltechnik, RWTH Aachen University, 52074 Aachen, Germany.

Institute for Technical Chemistry, Braunschweig University of Technology, 38106 Braunschweig, Germany.

出版信息

Polymers (Basel). 2024 Aug 20;16(16):2349. doi: 10.3390/polym16162349.


DOI:10.3390/polym16162349
PMID:39204570
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11360056/
Abstract

Injuries to tendons and ligaments are highly prevalent in the musculoskeletal system. Current treatments involve autologous transplants with limited availability and donor site morbidity. Tissue engineering offers a new approach through temporary load-bearing scaffolds. These scaffolds have to fulfill numerous requirements, the majority of which can be met using braiding combined with high-strength polycaprolactone (PCL) fibers. Considering regulatory requirements, several medical-grade PCL materials were assessed regarding their mechanical, degradational and cell biological properties. In the course of the investigation, an excellent fiber tensile strength of up to 850 MPa was achieved. The fibers were braided into multilayer scaffolds and scaled to match the human ACL. These were characterized regarding their morphology and their mechanical and degradational properties. Two strategies were followed to provide biological cues: (a) applying a chitosan-graft-PCL surface modification and (b) using non-circular fiber morphologies as topographical stimuli. Cell vitality assays showed generally positive cytocompatibility and no impairments due to the surface modification or material grade. The best cell vitality was achieved with a scaffold consisting of snowflake-shaped monofilaments combined with a 25° braiding angle. The surface modification equips the scaffold with a release platform for function molecules (as recently demonstrated) so that a holistic approach to addressing the numerous requirements is provided.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c3/11360056/fd7f357070bf/polymers-16-02349-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c3/11360056/252f3014893e/polymers-16-02349-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c3/11360056/f2875c9dbf5e/polymers-16-02349-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c3/11360056/e436612d83c3/polymers-16-02349-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c3/11360056/8de4dfaf416f/polymers-16-02349-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c3/11360056/a1520d0cbc3d/polymers-16-02349-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c3/11360056/41e528515e5a/polymers-16-02349-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c3/11360056/03f6fea4ac63/polymers-16-02349-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c3/11360056/4a80c36eaffb/polymers-16-02349-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c3/11360056/73a29365a4b5/polymers-16-02349-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c3/11360056/2b61c2453081/polymers-16-02349-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c3/11360056/fd7f357070bf/polymers-16-02349-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c3/11360056/252f3014893e/polymers-16-02349-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c3/11360056/f2875c9dbf5e/polymers-16-02349-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c3/11360056/e436612d83c3/polymers-16-02349-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c3/11360056/8de4dfaf416f/polymers-16-02349-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c3/11360056/a1520d0cbc3d/polymers-16-02349-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c3/11360056/41e528515e5a/polymers-16-02349-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c3/11360056/03f6fea4ac63/polymers-16-02349-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c3/11360056/4a80c36eaffb/polymers-16-02349-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c3/11360056/73a29365a4b5/polymers-16-02349-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c3/11360056/2b61c2453081/polymers-16-02349-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41c3/11360056/fd7f357070bf/polymers-16-02349-g011.jpg

相似文献

[1]
Mechanical, Biological and In Vitro Degradation Investigation of Braided Scaffolds for Tendon and Ligament Tissue Engineering Based on Different Polycaprolactone Materials with Chitosan-Graft-PCL Surface Modification.

Polymers (Basel). 2024-8-20

[2]
Topographically and Chemically Enhanced Textile Polycaprolactone Scaffolds for Tendon and Ligament Tissue Engineering.

Polymers (Basel). 2024-2-9

[3]
Optimization of Polycaprolactone and Type I Collagen Scaffold for Tendon Tissue Regeneration.

Cureus. 2024-3-25

[4]
3D-Braided Poly-ε-Caprolactone-Based Scaffolds for Ligament Tissue Engineering.

J Funct Biomater. 2022-11-8

[5]
Enhanced biological properties of biomimetic apatite fabricated polycaprolactone/chitosan nanofibrous bio-composite for tendon and ligament regeneration.

J Photochem Photobiol B. 2018-1

[6]
Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering.

J Mater Sci Mater Med. 2019-4-29

[7]
Nanofiber Scaffold Based on Polylactic Acid-Polycaprolactone for Anterior Cruciate Ligament Injury.

Polymers (Basel). 2022-7-23

[8]
Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies.

Biomaterials. 2005-8

[9]
Fabrication and Characterization of Zn Particle Incorporated Fibrous Scaffolds for Potential Application in Tissue Healing and Regeneration.

ACS Appl Mater Interfaces. 2023-10-25

[10]
Multilayered polycaprolactone/gelatin fiber-hydrogel composite for tendon tissue engineering.

Acta Biomater. 2016-4-15

引用本文的文献

[1]
Interlacing biology and engineering: An introduction to textiles and their application in tissue engineering.

Mater Today Bio. 2025-2-25

[2]
Effect of Collagen Coating and Fiber Profile on Tenocyte Growth on Braided Poly-ε-Caprolactone Scaffolds for Tendon and Ligament Regeneration.

Int J Mol Sci. 2025-2-18

[3]
3D Porous Polycaprolactone with Chitosan-Graft-PCL Modified Surface for In Situ Tissue Engineering.

Polymers (Basel). 2025-1-30

本文引用的文献

[1]
Topographically and Chemically Enhanced Textile Polycaprolactone Scaffolds for Tendon and Ligament Tissue Engineering.

Polymers (Basel). 2024-2-9

[2]
Release of TGF-β from Surface-Modified PCL Fiber Mats Triggers a Dose-Dependent Chondrogenic Differentiation of Human Mesenchymal Stromal Cells.

Pharmaceutics. 2023-4-21

[3]
Co-Culture of Mesenchymal Stem Cells and Ligamentocytes on Triphasic Embroidered Poly(L-lactide-co-ε-caprolactone) and Polylactic Acid Scaffolds for Anterior Cruciate Ligament Enthesis Tissue Engineering.

Int J Mol Sci. 2023-4-4

[4]
Ligament Regenerative Engineering: Braiding Scalable and Tunable Bioengineered Ligaments Using a Bench-Top Braiding Machine.

Regen Eng Transl Med. 2021-12

[5]
Long-term hydrolytic degradation study of polycaprolactone films and fibers grafted with poly(sodium styrene sulfonate): Mechanism study and cell response.

Biointerphases. 2020-11-17

[6]
Heparin Anticoagulant for Human Bone Marrow Does Not Influence In Vitro Performance of Human Mesenchymal Stromal Cells.

Cells. 2020-6-29

[7]
Enhanced Growth of Lapine Anterior Cruciate Ligament-Derived Fibroblasts on Scaffolds Embroidered from Poly(l-lactide--ε-caprolactone) and Polylactic Acid Threads Functionalized by Fluorination and Hexamethylene Diisocyanate Cross-Linked Collagen Foams.

Int J Mol Sci. 2020-2-8

[8]
Biodegradable polymer nanocomposites for ligament/tendon tissue engineering.

J Nanobiotechnology. 2020-1-30

[9]
Current Progress in Tendon and Ligament Tissue Engineering.

Tissue Eng Regen Med. 2019-6-26

[10]
"Swiss roll"-like bioactive hybrid scaffolds for promoting bone tissue ingrowth and tendon-bone healing after anterior cruciate ligament reconstruction.

Biomater Sci. 2019-12-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索