Miles Christopher E, Zhu Jie, Mogilner Alex
Department of Mathematics and Biology, Courant Institute of Mathematical Sciences, New York University, New York, USA.
Department of Mathematics, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, USA.
Bull Math Biol. 2022 Jan 10;84(2):29. doi: 10.1007/s11538-021-00985-2.
Intracellular forces shape cellular organization and function. One example is the mitotic spindle, a cellular machine consisting of multiple chromosomes and centrosomes which interact via dynamic microtubule filaments and motor proteins, resulting in complicated spatially dependent forces. For a cell to divide properly, it is important for the spindle to be bipolar, with chromosomes at the center and multiple centrosomes clustered into two 'poles' at opposite sides of the chromosomes. Experimental observations show that in unhealthy cells, the spindle can take on a variety of patterns. What forces drive each of these patterns? It is known that attraction between centrosomes is key to bipolarity, but what prevents the centrosomes from collapsing into a monopolar configuration? Here, we explore the hypothesis that torque rotating chromosome arms into orientations perpendicular to the centrosome-centromere vector promotes spindle bipolarity. To test this hypothesis, we construct a pairwise-interaction model of the spindle. On a continuum version of the model, an integro-PDE system, we perform linear stability analysis and construct numerical solutions which display a variety of spatial patterns. We also simulate a discrete particle model resulting in a phase diagram that confirms that the spindle bipolarity emerges most robustly with torque. Altogether, our results suggest that rotational forces may play an important role in dictating spindle patterning.
细胞内的力塑造了细胞的组织和功能。一个例子是有丝分裂纺锤体,它是一种由多个染色体和中心体组成的细胞机器,这些染色体和中心体通过动态微管丝和运动蛋白相互作用,产生复杂的空间依赖性力。为了使细胞正常分裂,纺锤体呈双极状很重要,染色体位于中心,多个中心体聚集在染色体相对两侧的两个“极”上。实验观察表明,在不健康的细胞中,纺锤体可以呈现多种模式。是什么力量驱动了这些模式中的每一种?已知中心体之间的吸引力是双极性的关键,但是什么阻止中心体坍缩成单极构型呢?在这里,我们探讨这样一种假设,即扭矩将染色体臂旋转到垂直于中心体 - 着丝粒向量的方向会促进纺锤体双极性。为了验证这一假设,我们构建了纺锤体的成对相互作用模型。在该模型的连续版本,即一个积分 - 偏微分方程系统上,我们进行线性稳定性分析并构建显示各种空间模式的数值解。我们还模拟了一个离散粒子模型,得到一个相图,证实了纺锤体双极性在有扭矩时出现得最为稳健。总之,我们的结果表明旋转力可能在决定纺锤体模式方面发挥重要作用。