Indian Association for the Cultivation of Science, Kolkata, India.
Gerber Technology, Tolland, Connecticut.
Biophys J. 2020 Jul 21;119(2):434-447. doi: 10.1016/j.bpj.2020.06.004. Epub 2020 Jun 12.
To segregate chromosomes in mitosis, cells assemble a mitotic spindle, a molecular machine with centrosomes at two opposing cell poles and chromosomes at the equator. Microtubules and molecular motors connect the poles to kinetochores, specialized protein assemblies on the centromere regions of the chromosomes. Bipolarity of the spindle is crucial for the proper cell division, and two centrosomes in animal cells naturally become two spindle poles. Cancer cells are often multicentrosomal, yet they are able to assemble bipolar spindles by clustering centrosomes into two spindle poles. Mechanisms of this clustering are debated. In this study, we computationally screen effective forces between 1) centrosomes, 2) centrosomes and kinetochores, 3) centrosomes and chromosome arms, and 4) centrosomes and cell cortex to understand mechanics that determines three-dimensional spindle architecture. To do this, we use the stochastic Monte Carlo search for stable mechanical equilibria in the effective energy landscape of the spindle. We find that the following conditions have to be met to robustly assemble the bipolar spindle in a multicentrosomal cell: 1) the strengths of centrosomes' attraction to each other and to the cell cortex have to be proportional to each other and 2) the strengths of centrosomes' attraction to kinetochores and repulsion from the chromosome arms have to be proportional to each other. We also find that three other spindle configurations emerge if these conditions are not met: 1) collapsed, 2) monopolar, and 3) multipolar spindles, and the computational screen reveals mechanical conditions for these abnormal spindles.
为了在有丝分裂中分离染色体,细胞组装有丝分裂纺锤体,这是一种具有中心体的分子机器,位于两个相对的细胞极和赤道上的染色体。微管和分子马达将两极连接到动粒上,动粒是染色体着丝粒区域的专门蛋白组装体。纺锤体的两极性对于正常的细胞分裂至关重要,而动物细胞中的两个中心体自然成为两个纺锤极。癌细胞通常是多中心体的,但它们能够通过将中心体聚集到两个纺锤极来组装双极纺锤体。这种聚集的机制存在争议。在这项研究中,我们通过计算筛选了以下四个方面的有效力:1)中心体之间,2)中心体和动粒之间,3)中心体和染色体臂之间,4)中心体和细胞质膜之间,以了解决定三维纺锤体结构的力学机制。为此,我们使用随机蒙特卡罗搜索来寻找纺锤体有效能量景观中的稳定力学平衡。我们发现,要在多中心体细胞中稳健地组装双极纺锤体,必须满足以下条件:1)中心体之间以及中心体与细胞质膜之间的吸引力强度必须彼此成比例;2)中心体与动粒的吸引力强度和与染色体臂的排斥力强度必须彼此成比例。我们还发现,如果不满足这些条件,会出现另外三种纺锤体构型:1)塌陷的,2)单极的,3)多极的纺锤体,计算筛选揭示了这些异常纺锤体的力学条件。