Zhang Xialin, Dou Linqin, Zhang Ming, Wang Yu, Jiang Xin, Li Xinqiong, Wei Long, Chen Yuejia, Zhou Cuisong, Geng Jia
Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China.
College of Chemistry, Sichuan University, Chengdu, 610041, China.
Mol Biomed. 2021 Feb 28;2(1):6. doi: 10.1186/s43556-021-00026-3.
Interface between neuron cells and biomaterials is the key to real-time sensing, transmitting and manipulating of neuron activities, which are the long-term pursue of scientists and gain intense research focus recently. It is of great interest to develop a sensor with exquisite sensitivity and excellent selectivity for real-time monitoring neurotransmitters transport through single live cell. Sensing techniques including electrode-based methods, optogenetics, and nanowire cell penetration systems have been developed to monitor the neuron activities. However, their biocompatibilities remain a challenge. Protein nanopores with membrane compatibility and lumen tunability provide real-time, single-molecule sensitivities for biosensing of DNA, RNA, peptides and small molecules. In this study, an engineered protein nanopore MspA (Mycobacterium smegmatis porin A) through site-directed mutation with histidine selectively bind with Cu in its internal lumen. Chelation of neurotransmitters such as L-glutamate (L-Glu), dopamine (DA) and norepinephrine (NE) with the Cu creates specific current signals, showing different transient current blockade and dwell time in single channel electrophysiological recording. Furthermore, the functionalized M2MspA-N91H nanopores have been embedded in live HEK293T cell membrane for real-time, in situ monitoring of extracellular L-glutamate translocating through the nanopore. This biomimetic neurotransmitter nanopore has provided a new platform for future development of neuron sensors, drug carrier and artificial synapse.
神经元细胞与生物材料之间的界面是实时感知、传输和操纵神经元活动的关键,这是科学家们长期以来的追求,并且最近受到了广泛的研究关注。开发一种具有高灵敏度和高选择性的传感器,用于实时监测神经递质通过单个活细胞的运输,具有重要意义。已经开发了包括基于电极的方法、光遗传学和纳米线细胞穿透系统在内的传感技术来监测神经元活动。然而,它们的生物相容性仍然是一个挑战。具有膜相容性和内腔可调性的蛋白质纳米孔为DNA、RNA、肽和小分子的生物传感提供了实时、单分子灵敏度。在本研究中,通过定点突变工程化的蛋白质纳米孔MspA(耻垢分枝杆菌孔蛋白A)在其内腔中与组氨酸选择性结合铜。神经递质如L-谷氨酸(L-Glu)、多巴胺(DA)和去甲肾上腺素(NE)与铜的螯合产生特定的电流信号,在单通道电生理记录中显示出不同的瞬态电流阻断和停留时间。此外,功能化的M2MspA-N91H纳米孔已被嵌入活的HEK293T细胞膜中,用于实时原位监测细胞外L-谷氨酸通过纳米孔的转运。这种仿生神经递质纳米孔为未来神经元传感器、药物载体和人工突触的发展提供了一个新平台。