Suppr超能文献

机器学习识别转移性乳腺癌晚期复发危险因素的交互簇

Machine Learning to Discern Interactive Clusters of Risk Factors for Late Recurrence of Metastatic Breast Cancer.

作者信息

Gomez Marti Juan Luis, Brufsky Adam, Wells Alan, Jiang Xia

机构信息

Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA.

R&D Service, Pittsburgh VA Health System, Pittsburgh, PA 15240, USA.

出版信息

Cancers (Basel). 2022 Jan 5;14(1):253. doi: 10.3390/cancers14010253.

Abstract

BACKGROUND

Risk of metastatic recurrence of breast cancer after initial diagnosis and treatment depends on the presence of a number of risk factors. Although most univariate risk factors have been identified using classical methods, machine-learning methods are also being used to tease out non-obvious contributors to a patient's individual risk of developing late distant metastasis. Bayesian-network algorithms can identify not only risk factors but also interactions among these risks, which consequently may increase the risk of developing metastatic breast cancer. We proposed to apply a previously developed machine-learning method to discern risk factors of 5-, 10- and 15-year metastases.

METHODS

We applied a previously validated algorithm named the Markov Blanket and Interactive Risk Factor Learner (MBIL) to the electronic health record (EHR)-based Lynn Sage Database (LSDB) from the Lynn Sage Comprehensive Breast Center at Northwestern Memorial Hospital. This algorithm provided an output of both single and interactive risk factors of 5-, 10-, and 15-year metastases from the LSDB. We individually examined and interpreted the clinical relevance of these interactions based on years to metastasis and reliance on interactivity between risk factors.

RESULTS

We found that, with lower alpha values (low interactivity score), the prevalence of variables with an independent influence on long-term metastasis was higher (i.e., HER2, TNEG). As the value of alpha increased to 480, stronger interactions were needed to define clusters of factors that increased the risk of metastasis (i.e., ER, smoking, race, alcohol usage).

CONCLUSION

MBIL identified single and interacting risk factors of metastatic breast cancer, many of which were supported by clinical evidence. These results strongly recommend the development of further large data studies with different databases to validate the degree to which some of these variables impact metastatic breast cancer in the long term.

摘要

背景

乳腺癌初次诊断和治疗后发生转移复发的风险取决于多种风险因素。虽然大多数单变量风险因素已通过经典方法确定,但机器学习方法也被用于找出对患者发生晚期远处转移的个体风险有非明显影响的因素。贝叶斯网络算法不仅可以识别风险因素,还能识别这些风险之间的相互作用,从而可能增加发生转移性乳腺癌的风险。我们提议应用一种先前开发的机器学习方法来识别5年、10年和15年转移的风险因素。

方法

我们将一种先前经过验证的名为马尔可夫毯和交互风险因素学习器(MBIL)的算法应用于西北纪念医院林恩·塞奇综合乳腺中心基于电子健康记录(EHR)的林恩·塞奇数据库(LSDB)。该算法从LSDB输出了5年、10年和15年转移的单一和交互风险因素。我们根据转移年限和对风险因素之间交互作用的依赖程度,分别检查并解释了这些相互作用的临床相关性。

结果

我们发现,随着α值降低(交互性得分低),对长期转移有独立影响的变量的患病率更高(即HER2、TNEG)。当α值增加到480时,需要更强的相互作用来定义增加转移风险的因素簇(即雌激素受体、吸烟、种族、饮酒)。

结论

MBIL识别出了转移性乳腺癌的单一和相互作用风险因素,其中许多有临床证据支持。这些结果强烈建议开展进一步的大数据研究,使用不同数据库来验证其中一些变量对转移性乳腺癌长期影响的程度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0019/8750735/e8e3bde54c97/cancers-14-00253-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验