Suppr超能文献

追踪内皮细胞迁移和硬度测量揭示细胞骨架动力学的作用。

Tracking of Endothelial Cell Migration and Stiffness Measurements Reveal the Role of Cytoskeletal Dynamics.

机构信息

Bioengineering Program, DeMatteis School of Engineering and Applied Science, Hofstra University, Hempstead, NY 11549, USA.

Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.

出版信息

Int J Mol Sci. 2022 Jan 5;23(1):568. doi: 10.3390/ijms23010568.

Abstract

Cell migration is a complex, tightly regulated multistep process in which cytoskeletal reorganization and focal adhesion redistribution play a central role. Core to both individual and collective migration is the persistent random walk, which is characterized by random force generation and resistance to directional change. We first discuss a model that describes the stochastic movement of ECs and characterizes EC persistence in wound healing. To that end, we pharmacologically disrupted cytoskeletal dynamics, cytochalasin D for actin and nocodazole for tubulin, to understand its contributions to cell morphology, stiffness, and motility. As such, the use of Atomic Force Microscopy (AFM) enabled us to probe the topography and stiffness of ECs, while time lapse microscopy provided observations in wound healing models. Our results suggest that actin and tubulin dynamics contribute to EC shape, compressive moduli, and directional organization in collective migration. Insights from the model and time lapse experiment suggest that EC speed and persistence are directionally organized in wound healing. Pharmacological disruptions suggest that actin and tubulin dynamics play a role in collective migration. Current insights from both the model and experiment represent an important step in understanding the biomechanics of EC migration as a therapeutic target.

摘要

细胞迁移是一个复杂的、受严格调控的多步骤过程,其中细胞骨架的重组和焦点黏附的重新分布起着核心作用。无论是个体迁移还是群体迁移,其核心都是持续的随机游走,其特征是随机力的产生和对方向变化的抵抗。我们首先讨论了一个描述 EC 随机运动并描述伤口愈合中 EC 持久性的模型。为此,我们通过药理学手段破坏细胞骨架动力学,用细胞松弛素 D 破坏肌动蛋白,用诺考达唑破坏微管,以了解它们对细胞形态、刚度和迁移能力的贡献。因此,原子力显微镜(AFM)的使用使我们能够探测 EC 的形貌和刚度,而延时显微镜则为伤口愈合模型中的观察提供了条件。我们的结果表明,肌动蛋白和微管动力学有助于 EC 形状、压缩模量和集体迁移中的定向组织。模型和延时实验的结果表明,在伤口愈合过程中,EC 的速度和持久性是定向组织的。药理学破坏表明,肌动蛋白和微管动力学在集体迁移中发挥作用。模型和实验的当前结果代表了理解 EC 迁移的生物力学作为治疗靶点的重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0282/8745078/a8762c276072/ijms-23-00568-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验