Suppr超能文献

利用航空激光扫描和街景影像的点云图对城市环境中的树冠进行测绘。

Mapping Tree Canopy in Urban Environments Using Point Clouds from Airborne Laser Scanning and Street Level Imagery.

机构信息

EiFAB-iuFOR, Campus Duques de Soria s/n, Universidad de Valladolid, 42004 Soria, Spain.

Föra Forest Technologies sll, Campus Duques de Soria s/n, 42004 Soria, Spain.

出版信息

Sensors (Basel). 2022 Apr 24;22(9):3269. doi: 10.3390/s22093269.

Abstract

Resilient cities incorporate a social, ecological, and technological systems perspective through their trees, both in urban and peri-urban forests and linear street trees, and help promote and understand the concept of ecosystem resilience. Urban tree inventories usually involve the collection of field data on the location, genus, species, crown shape and volume, diameter, height, and health status of these trees. In this work, we have developed a multi-stage methodology to update urban tree inventories in a fully automatic way, and we have applied it in the city of Pamplona (Spain). We have compared and combined two of the most common data sources for updating urban tree inventories: Airborne Laser Scanning (ALS) point clouds combined with aerial orthophotographs, and street-level imagery from Google Street View (GSV). Depending on the data source, different methodologies were used to identify the trees. In the first stage, the use of individual tree detection techniques in ALS point clouds was compared with the detection of objects (trees) on street level images using computer vision (CV) techniques. In both cases, a high success rate or recall (number of true positive with respect to all detectable trees) was obtained, where between 85.07% and 86.42% of the trees were well-identified, although many false positives (FPs) or trees that did not exist or that had been confused with other objects were always identified. In order to reduce these errors or FPs, a second stage was designed, where FP debugging was performed through two methodologies: (a) based on the automatic checking of all possible trees with street level images, and (b) through a machine learning binary classification model trained with spectral data from orthophotographs. After this second stage, the recall decreased to about 75% (between 71.43 and 78.18 depending on the procedure used) but most of the false positives were eliminated. The results obtained with both data sources were robust and accurate. We can conclude that the results obtained with the different methodologies are very similar, where the main difference resides in the access to the starting information. While the use of street-level images only allows for the detection of trees growing in trafficable streets and is a source of information that is usually paid for, the use of ALS and aerial orthophotographs allows for the location of trees anywhere in the city, including public and private parks and gardens, and in many countries, these data are freely available.

摘要

弹性城市通过其树木,包括城市和城郊森林以及线性街道树木,纳入了社会、生态和技术系统的观点,并有助于促进和理解生态系统弹性的概念。城市树木清单通常涉及收集有关这些树木的位置、属、种、树冠形状和体积、直径、高度和健康状况的实地数据。在这项工作中,我们开发了一种多阶段的方法,以全自动方式更新城市树木清单,并将其应用于西班牙潘普洛纳市。我们比较并结合了更新城市树木清单的两种最常见数据源:机载激光扫描 (ALS) 点云和航空正射影像,以及谷歌街景 (GSV) 的街道级图像。根据数据源的不同,使用了不同的方法来识别树木。在第一阶段,比较了在 ALS 点云中使用单个树木检测技术与使用计算机视觉 (CV) 技术在街道级图像上检测树木的方法。在这两种情况下,都获得了很高的成功率或召回率(相对于所有可检测到的树木的真阳性数),其中 85.07% 到 86.42%的树木得到了很好的识别,尽管总是会识别出许多假阳性 (FP) 或不存在或与其他物体混淆的树木。为了减少这些错误或 FP,设计了第二阶段,通过两种方法进行 FP 调试:(a) 基于使用街道级图像自动检查所有可能的树木,以及 (b) 通过使用从正射影像中提取的光谱数据训练的机器学习二进制分类模型。经过第二阶段后,召回率下降到约 75%(具体取决于使用的程序,在 71.43 到 78.18 之间),但大多数 FP 都被消除了。两种数据源得到的结果都是稳健和准确的。我们可以得出结论,不同方法得到的结果非常相似,主要区别在于访问初始信息的方式。虽然使用街道级图像只能检测到可通行街道上生长的树木,而且是一种通常需要付费的信息源,但使用 ALS 和航空正射影像可以定位城市中任何地方的树木,包括公共和私人公园和花园,在许多国家,这些数据都是免费提供的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec9b/9099903/22706d824a92/sensors-22-03269-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验