Vehicle Industry Research Center, Széchenyi István University, H-9026 Győr, Hungary.
Department of Product Design and Robotics, Transylvania University of Brasov, 500036 Brasov, Romania.
Sensors (Basel). 2021 Dec 28;22(1):194. doi: 10.3390/s22010194.
Road and sidewalk detection in urban scenarios is a challenging task because of the road imperfections and high sensor data bandwidth. Traditional free space and ground filter algorithms are not sensitive enough for small height differences. Camera-based or sensor-fusion solutions are widely used to classify drivable road from sidewalk or pavement. A LIDAR sensor contains all the necessary information from which the feature extraction can be done. Therefore, this paper focuses on LIDAR-based feature extraction. For road and sidewalk detection, the current paper presents a real-time (20 Hz+) solution. This solution can also be used for local path planning. Sidewalk edge detection is the combination of three algorithms working parallelly. To validate the result, the de facto standard benchmark dataset, KITTI, was used alongside our measurements. The data and the source code to reproduce the results are shared publicly on our GitHub repository.
城市场景中的道路和人行道检测是一项具有挑战性的任务,因为道路存在不完美之处,且传感器数据带宽较高。传统的自由空间和地面滤波器算法对于小的高度差不够敏感。基于相机或传感器融合的解决方案被广泛用于将可行驶的道路与人行道或路面进行分类。激光雷达传感器包含了可以进行特征提取的所有必要信息。因此,本文专注于基于激光雷达的特征提取。对于道路和人行道检测,本文提出了一种实时(20 Hz+)解决方案。该解决方案也可用于局部路径规划。人行道边缘检测是三个并行工作的算法的组合。为了验证结果,我们使用了事实上的标准基准数据集 KITTI,以及我们的测量数据。数据和重现结果的源代码已在我们的 GitHub 存储库中公开共享。