Suppr超能文献

基于多模型框架下不同运动模型的机动分类算法性能评估。

Performance Evaluation of a Maneuver Classification Algorithm Using Different Motion Models in a Multi-Model Framework.

机构信息

Department of Control for Transportation and Vehicle Systems, Budapest University of Technology and Economics, H-1111 Budapest, Hungary.

出版信息

Sensors (Basel). 2022 Jan 4;22(1):347. doi: 10.3390/s22010347.

Abstract

Environment perception is one of the major challenges in the vehicle industry nowadays, as acknowledging the intentions of the surrounding traffic participants can profoundly decrease the occurrence of accidents. Consequently, this paper focuses on comparing different motion models, acknowledging their role in the performance of maneuver classification. In particular, this paper proposes utilizing the Interacting Multiple Model framework complemented with constrained Kalman filtering in this domain that enables the comparisons of the different motions models' accuracy. The performance of the proposed method with different motion models is thoroughly evaluated in a simulation environment, including an observer and observed vehicle.

摘要

环境感知是当今汽车行业面临的主要挑战之一,因为识别周围交通参与者的意图可以显著降低事故发生的可能性。因此,本文重点比较了不同的运动模型,承认它们在转向行为分类性能中的作用。特别是,本文提出在交互多模型框架中使用约束卡尔曼滤波来比较不同运动模型的准确性。在包括观察者和被观察车辆的仿真环境中,对不同运动模型的性能进行了全面评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fec/8749875/d9b63d86aa50/sensors-22-00347-g001.jpg

相似文献

8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验