Pandey Pratima, Sahoo Rajashree, Singh Khusbu, Pati Sanghamitra, Mathew Jose, Pandey Avinash Chandra, Kant Rajni, Han Ihn, Choi Eun-Ha, Dwivedi Gaurav Raj, Yadav Dharmendra K
Department of Biotechnology, Bundelkhand University, Jhansi 284128, India.
Nanotechnology Application Centre, University of Allahabad, Allahabad 211002, India.
Nanomaterials (Basel). 2021 Dec 30;12(1):117. doi: 10.3390/nano12010117.
Bacteria employ numerous resistance mechanisms against structurally distinct drugs by the process of multidrug resistance. A study was planned to discover the antibacterial potential of a graphene oxide nanosheet (GO), a graphene oxide-zinc oxide nanocomposite (GO/ZnO), a graphene oxide-chitosan nanocomposite (GO-CS), a zinc oxide decorated graphene oxide-chitosan nanocomposite (GO-CS/ZnO), and zinc oxide nanoparticles (ZnO) alone and in a blend with antibiotics against a PS-2 isolate of . These nanocomposites reduced the MIC of tetracycline (TET) from 16 folds to 64 folds against a multidrug-resistant clinical isolate. Efflux pumps were interfered, as evident by an ethidium bromide synergy study with nanocomposites, as well as inhibiting biofilm synthesis. These nanoparticles/nanocomposites also decreased the mutant prevention concentration (MPC) of TET. To the best of our knowledge, this is the first report on nanomaterials as a synergistic agent via inhibition of efflux and biofilm synthesis.
细菌通过多药耐药过程采用多种针对结构不同药物的耐药机制。计划开展一项研究,以发现氧化石墨烯纳米片(GO)、氧化石墨烯 - 氧化锌纳米复合材料(GO/ZnO)、氧化石墨烯 - 壳聚糖纳米复合材料(GO - CS)、氧化锌修饰的氧化石墨烯 - 壳聚糖纳米复合材料(GO - CS/ZnO)以及单独的氧化锌纳米颗粒(ZnO)和与抗生素混合使用时,对[某种细菌]的PS - 2分离株的抗菌潜力。这些纳米复合材料使针对多重耐药临床分离株的四环素(TET)最低抑菌浓度(MIC)降低了16倍至64倍。通过与纳米复合材料的溴化乙锭协同研究以及抑制生物膜合成可以明显看出,外排泵受到了干扰。这些纳米颗粒/纳米复合材料还降低了TET的突变预防浓度(MPC)。据我们所知,这是关于纳米材料通过抑制外排和生物膜合成作为协同剂的首篇报道。