Suppr超能文献

为了理解从腺瘤到结直肠癌的转变,建立一个可解释的宏基因组机器学习模型。

Towards a metagenomics machine learning interpretable model for understanding the transition from adenoma to colorectal cancer.

机构信息

Clinical Bioinformatics Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocio, 41013, Seville, Spain.

Computational Systems Medicine, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio, 41013, Seville, Spain.

出版信息

Sci Rep. 2022 Jan 10;12(1):450. doi: 10.1038/s41598-021-04182-y.

Abstract

Gut microbiome is gaining interest because of its links with several diseases, including colorectal cancer (CRC), as well as the possibility of being used to obtain non-intrusive predictive disease biomarkers. Here we performed a meta-analysis of 1042 fecal metagenomic samples from seven publicly available studies. We used an interpretable machine learning approach based on functional profiles, instead of the conventional taxonomic profiles, to produce a highly accurate predictor of CRC with better precision than those of previous proposals. Moreover, this approach is also able to discriminate samples with adenoma, which makes this approach very promising for CRC prevention by detecting early stages in which intervention is easier and more effective. In addition, interpretable machine learning methods allow extracting features relevant for the classification, which reveals basic molecular mechanisms accounting for the changes undergone by the microbiome functional landscape in the transition from healthy gut to adenoma and CRC conditions. Functional profiles have demonstrated superior accuracy in predicting CRC and adenoma conditions than taxonomic profiles and additionally, in a context of explainable machine learning, provide useful hints on the molecular mechanisms operating in the microbiota behind these conditions.

摘要

肠道微生物组因其与包括结直肠癌(CRC)在内的多种疾病的关联,以及作为获取非侵入性预测疾病生物标志物的可能性而受到关注。在这里,我们对来自七个公开可用研究的 1042 个粪便宏基因组样本进行了荟萃分析。我们使用了一种基于功能谱的可解释机器学习方法,而不是传统的分类学谱,来生成一种高度准确的 CRC 预测器,其精度优于以前的建议。此外,这种方法还能够区分有腺瘤的样本,这使得这种方法在通过检测更容易和更有效的干预的早期阶段来预防 CRC 方面非常有前景。此外,可解释的机器学习方法允许提取与分类相关的特征,这揭示了基本的分子机制,解释了微生物组功能景观在从健康肠道到腺瘤和 CRC 状态的转变过程中所经历的变化。功能谱在预测 CRC 和腺瘤状态方面的准确性优于分类谱,此外,在可解释的机器学习背景下,提供了关于这些状态背后微生物群中运作的分子机制的有用提示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1eea/8748837/b6a37a7aa829/41598_2021_4182_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验