Suppr超能文献

基于机器学习应用的微生物组数据综合概述:分类、可及性及未来方向。

A comprehensive overview of microbiome data in the light of machine learning applications: categorization, accessibility, and future directions.

作者信息

Kumar Bablu, Lorusso Erika, Fosso Bruno, Pesole Graziano

机构信息

Università degli Studi di Milano, Milan, Italy.

Department of Biosciences, Biotechnology and Environment, University of Bari A. Moro, Bari, Italy.

出版信息

Front Microbiol. 2024 Feb 13;15:1343572. doi: 10.3389/fmicb.2024.1343572. eCollection 2024.

Abstract

Metagenomics, Metabolomics, and Metaproteomics have significantly advanced our knowledge of microbial communities by providing culture-independent insights into their composition and functional potential. However, a critical challenge in this field is the lack of standard and comprehensive metadata associated with raw data, hindering the ability to perform robust data stratifications and consider confounding factors. In this comprehensive review, we categorize publicly available microbiome data into five types: shotgun sequencing, amplicon sequencing, metatranscriptomic, metabolomic, and metaproteomic data. We explore the importance of metadata for data reuse and address the challenges in collecting standardized metadata. We also, assess the limitations in metadata collection of existing public repositories collecting metagenomic data. This review emphasizes the vital role of metadata in interpreting and comparing datasets and highlights the need for standardized metadata protocols to fully leverage metagenomic data's potential. Furthermore, we explore future directions of implementation of Machine Learning (ML) in metadata retrieval, offering promising avenues for a deeper understanding of microbial communities and their ecological roles. Leveraging these tools will enhance our insights into microbial functional capabilities and ecological dynamics in diverse ecosystems. Finally, we emphasize the crucial metadata role in ML models development.

摘要

宏基因组学、代谢组学和宏蛋白质组学通过提供对微生物群落组成和功能潜力的非培养依赖性见解,显著推进了我们对微生物群落的认识。然而,该领域的一个关键挑战是缺乏与原始数据相关的标准和全面的元数据,这阻碍了进行强大的数据分层和考虑混杂因素的能力。在这篇全面的综述中,我们将公开可用的微生物组数据分为五种类型:鸟枪法测序、扩增子测序、宏转录组学、代谢组学和宏蛋白质组学数据。我们探讨了元数据对于数据重用的重要性,并解决了收集标准化元数据方面的挑战。我们还评估了现有收集宏基因组数据的公共存储库在元数据收集方面的局限性。这篇综述强调了元数据在解释和比较数据集方面的重要作用,并强调需要标准化的元数据协议来充分利用宏基因组数据的潜力。此外,我们探索了机器学习(ML)在元数据检索中的未来应用方向,为更深入了解微生物群落及其生态作用提供了有前景的途径。利用这些工具将增强我们对不同生态系统中微生物功能能力和生态动态的见解。最后,我们强调了元数据在ML模型开发中的关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ff4/10900530/0400e56cd713/fmicb-15-1343572-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验