文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

NG-meta-profiler:使用特定于领域的语言 NGLess 快速处理宏基因组。

NG-meta-profiler: fast processing of metagenomes using NGLess, a domain-specific language.

机构信息

Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.

Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.

出版信息

Microbiome. 2019 Jun 3;7(1):84. doi: 10.1186/s40168-019-0684-8.


DOI:10.1186/s40168-019-0684-8
PMID:31159881
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6547473/
Abstract

BACKGROUND: Shotgun metagenomes contain a sample of all the genomic material in an environment, allowing for the characterization of a microbial community. In order to understand these communities, bioinformatics methods are crucial. A common first step in processing metagenomes is to compute abundance estimates of different taxonomic or functional groups from the raw sequencing data. Given the breadth of the field, computational solutions need to be flexible and extensible, enabling the combination of different tools into a larger pipeline. RESULTS: We present NGLess and NG-meta-profiler. NGLess is a domain specific language for describing next-generation sequence processing pipelines. It was developed with the goal of enabling user-friendly computational reproducibility. It provides built-in support for many common operations on sequencing data and is extensible with external tools with configuration files. Using this framework, we developed NG-meta-profiler, a fast profiler for metagenomes which performs sequence preprocessing, mapping to bundled databases, filtering of the mapping results, and profiling (taxonomic and functional). It is significantly faster than either MOCAT2 or htseq-count and (as it builds on NGLess) its results are perfectly reproducible. CONCLUSIONS: NG-meta-profiler is a high-performance solution for metagenomics processing built on NGLess. It can be used as-is to execute standard analyses or serve as the starting point for customization in a perfectly reproducible fashion. NGLess and NG-meta-profiler are open source software (under the liberal MIT license) and can be downloaded from https://ngless.embl.de or installed through bioconda.

摘要

背景: shotgun 宏基因组包含环境中所有基因组物质的样本,可用于描述微生物群落。为了理解这些群落,生物信息学方法是至关重要的。处理宏基因组的常见第一步是根据原始测序数据计算不同分类或功能组的丰度估计值。鉴于该领域的广泛性,计算解决方案需要具有灵活性和可扩展性,能够将不同的工具组合到一个更大的管道中。

结果: 我们提出了 NGLess 和 NG-meta-profiler。NGLess 是一种用于描述下一代测序处理管道的特定领域语言。它的开发目标是实现用户友好的计算可重复性。它为测序数据的许多常见操作提供了内置支持,并可通过配置文件使用外部工具进行扩展。使用这个框架,我们开发了 NG-meta-profiler,这是一种用于宏基因组的快速分析器,它执行序列预处理、与捆绑数据库的映射、映射结果的过滤以及分析(分类和功能)。它的速度明显快于 MOCAT2 或 htseq-count,并且(由于它是基于 NGLess 构建的)其结果是完全可重复的。

结论: NG-meta-profiler 是一种基于 NGLess 的高性能宏基因组学处理解决方案。它可以直接用于执行标准分析,也可以作为定制的起点,以完全可重复的方式进行定制。NGLess 和 NG-meta-profiler 是开源软件(根据宽松的 MIT 许可证),可从 https://ngless.embl.de 下载或通过 bioconda 安装。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a859/6547473/06d3ea7ba95f/40168_2019_684_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a859/6547473/329dfc286d21/40168_2019_684_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a859/6547473/68ee25c9b20a/40168_2019_684_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a859/6547473/06d3ea7ba95f/40168_2019_684_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a859/6547473/329dfc286d21/40168_2019_684_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a859/6547473/68ee25c9b20a/40168_2019_684_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a859/6547473/06d3ea7ba95f/40168_2019_684_Fig3_HTML.jpg

相似文献

[1]
NG-meta-profiler: fast processing of metagenomes using NGLess, a domain-specific language.

Microbiome. 2019-6-3

[2]
MetaMeta: integrating metagenome analysis tools to improve taxonomic profiling.

Microbiome. 2017-8-14

[3]
Computational workflow for the fine-grained analysis of metagenomic samples.

BMC Genomics. 2016-10-25

[4]
Practical considerations for sampling and data analysis in contemporary metagenomics-based environmental studies.

J Microbiol Methods. 2018-11

[5]
MetCap: a bioinformatics probe design pipeline for large-scale targeted metagenomics.

BMC Bioinformatics. 2015-2-28

[6]
Metagenomics methods for the study of plant-associated microbial communities: A review.

J Microbiol Methods. 2020-3

[7]
drVM: a new tool for efficient genome assembly of known eukaryotic viruses from metagenomes.

Gigascience. 2017-2-1

[8]
Microbial community analysis using high-throughput sequencing technology: a beginner's guide for microbiologists.

J Microbiol. 2020-2-27

[9]
A bioinformatics pipeline integrating predictive metagenomics profiling for the analysis of 16S rDNA/rRNA sequencing data originated from foods.

Food Microbiol. 2018-5-24

[10]
Practical evaluation of 11 de novo assemblers in metagenome assembly.

J Microbiol Methods. 2018-8

引用本文的文献

[1]
Roles of physical disturbance and biome properties in shaping microbial communities within Indian Ocean eddies.

ISME Commun. 2025-7-2

[2]
Postbiotic CECT 9161 Influences the Canine Oral Metagenome and Reduces Plaque Biofilm Formation.

Animals (Basel). 2025-5-30

[3]
Glucuronidation Metabolomic Fingerprinting to Map Host-Microbe Metabolism.

Res Sq. 2025-4-8

[4]
Metagenome-guided culturomics for the targeted enrichment of gut microbes.

Nat Commun. 2025-1-14

[5]
Impact of simulation and reference catalogues on the evaluation of taxonomic profiling pipelines.

Microb Genom. 2025-1

[6]
Tailored impact of dietary fibers on gut microbiota: a multi-omics comparison on the lean and obese microbial communities.

Microbiome. 2024-11-30

[7]
Hidden Links Between Skin Microbiome and Skin Imaging Phenome.

Genomics Proteomics Bioinformatics. 2024-10-15

[8]
Effects of supplementation of live and heat-treated Bifidobacterium animalis subspecies lactis CECT 8145 on glycemic and insulinemic response, fecal microbiota, systemic biomarkers of inflammation, and white blood cell gene expression of adult dogs.

J Anim Sci. 2024-1-3

[9]
Segmental patterning of microbiota and immune cells in the murine intestinal tract.

Gut Microbes. 2024

[10]
A catalog of small proteins from the global microbiome.

Nat Commun. 2024-8-31

本文引用的文献

[1]
Microbial abundance, activity and population genomic profiling with mOTUs2.

Nat Commun. 2019-3-4

[2]
eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses.

Nucleic Acids Res. 2019-1-8

[3]
A multi-source domain annotation pipeline for quantitative metagenomic and metatranscriptomic functional profiling.

Microbiome. 2018-8-28

[4]
Bioconda: sustainable and comprehensive software distribution for the life sciences.

Nat Methods. 2018-7

[5]
Minimap2: pairwise alignment for nucleotide sequences.

Bioinformatics. 2018-9-15

[6]
Similarity of the dog and human gut microbiomes in gene content and response to diet.

Microbiome. 2018-4-19

[7]
Current understanding of the human microbiome.

Nat Med. 2018-4-10

[8]
The Human Gut Microbiome: From Association to Modulation.

Cell. 2018-3-8

[9]
Ten simple rules for biologists learning to program.

PLoS Comput Biol. 2018-1-4

[10]
Critical Assessment of Metagenome Interpretation-a benchmark of metagenomics software.

Nat Methods. 2017-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索