从系统到结构——利用遗传数据来构建蛋白质结构模型。
From systems to structure - using genetic data to model protein structures.
机构信息
Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
出版信息
Nat Rev Genet. 2022 Jun;23(6):342-354. doi: 10.1038/s41576-021-00441-w. Epub 2022 Jan 10.
Understanding the effects of genetic variation is a fundamental problem in biology that requires methods to analyse both physical and functional consequences of sequence changes at systems-wide and mechanistic scales. To achieve a systems view, protein interaction networks map which proteins physically interact, while genetic interaction networks inform on the phenotypic consequences of perturbing these protein interactions. Until recently, understanding the molecular mechanisms that underlie these interactions often required biophysical methods to determine the structures of the proteins involved. The past decade has seen the emergence of new approaches based on coevolution, deep mutational scanning and genome-scale genetic or chemical-genetic interaction mapping that enable modelling of the structures of individual proteins or protein complexes. Here, we review the emerging use of large-scale genetic datasets and deep learning approaches to model protein structures and their interactions, and discuss the integration of structural data from different sources.
理解遗传变异的影响是生物学中的一个基本问题,需要在系统和机制尺度上分析序列变化的物理和功能后果的方法。为了实现系统的观点,蛋白质相互作用网络描绘了哪些蛋白质物理上相互作用,而遗传相互作用网络则说明了干扰这些蛋白质相互作用的表型后果。直到最近,要了解这些相互作用的分子机制,通常还需要生物物理方法来确定所涉及蛋白质的结构。过去十年中,出现了一些新的方法,基于共进化、深度突变扫描以及基于全基因组的遗传或化学遗传相互作用图谱,这些方法能够对单个蛋白质或蛋白质复合物的结构进行建模。在这里,我们回顾了利用大规模遗传数据集和深度学习方法来模拟蛋白质结构及其相互作用的新方法,并讨论了来自不同来源的结构数据的整合。