Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany.
Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA.
Nat Biotechnol. 2022 May;40(5):741-750. doi: 10.1038/s41587-021-01136-7. Epub 2022 Jan 10.
The accuracy of methods for assembling transcripts from short-read RNA sequencing data is limited by the lack of long-range information. Here we introduce Ladder-seq, an approach that separates transcripts according to their lengths before sequencing and uses the additional information to improve the quantification and assembly of transcripts. Using simulated data, we show that a kallisto algorithm extended to process Ladder-seq data quantifies transcripts of complex genes with substantially higher accuracy than conventional kallisto. For reference-based assembly, a tailored scheme based on the StringTie2 algorithm reconstructs a single transcript with 30.8% higher precision than its conventional counterpart and is more than 30% more sensitive for complex genes. For de novo assembly, a similar scheme based on the Trinity algorithm correctly assembles 78% more transcripts than conventional Trinity while improving precision by 78%. In experimental data, Ladder-seq reveals 40% more genes harboring isoform switches compared to conventional RNA sequencing and unveils widespread changes in isoform usage upon mA depletion by Mettl14 knockout.
从短读 RNA 测序数据组装转录本的方法的准确性受到缺乏长程信息的限制。在这里,我们介绍了 Ladder-seq 方法,该方法在测序前根据转录本的长度对其进行分离,并利用额外的信息来提高转录本的定量和组装质量。使用模拟数据,我们表明,一种扩展到处理 Ladder-seq 数据的 kallisto 算法对复杂基因的转录本进行定量,其准确性要比传统的 kallisto 算法高得多。对于基于参考的组装,基于 StringTie2 算法的定制方案构建的单个转录本的精度比其常规对应物高 30.8%,并且对复杂基因的灵敏度提高了 30%以上。对于从头组装,基于 Trinity 算法的类似方案比传统 Trinity 正确组装的转录本多 78%,同时精度提高了 78%。在实验数据中,与传统的 RNA 测序相比,Ladder-seq 揭示了 40%更多的基因含有异构体开关,并且在 Mettl14 敲除导致 mA 耗竭时,揭示了异构体使用的广泛变化。