Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA.
Department of Statistics, University of California, Los Angeles, California 90095, USA.
Genome Res. 2019 Dec;29(12):2056-2072. doi: 10.1101/gr.251108.119. Epub 2019 Nov 6.
Genome-wide accurate identification and quantification of full-length mRNA isoforms is crucial for investigating transcriptional and posttranscriptional regulatory mechanisms of biological phenomena. Despite continuing efforts in developing effective computational tools to identify or assemble full-length mRNA isoforms from second-generation RNA-seq data, it remains a challenge to accurately identify mRNA isoforms from short sequence reads owing to the substantial information loss in RNA-seq experiments. Here, we introduce a novel statistical method, annotation-assisted isoform discovery (AIDE), the first approach that directly controls false isoform discoveries by implementing the testing-based model selection principle. Solving the isoform discovery problem in a stepwise and conservative manner, AIDE prioritizes the annotated isoforms and precisely identifies novel isoforms whose addition significantly improves the explanation of observed RNA-seq reads. We evaluate the performance of AIDE based on multiple simulated and real RNA-seq data sets followed by PCR-Sanger sequencing validation. Our results show that AIDE effectively leverages the annotation information to compensate the information loss owing to short read lengths. AIDE achieves the highest precision in isoform discovery and the lowest error rates in isoform abundance estimation, compared with three state-of-the-art methods Cufflinks, SLIDE, and StringTie. As a robust bioinformatics tool for transcriptome analysis, AIDE enables researchers to discover novel transcripts with high confidence.
从二代 RNA-seq 数据中识别或组装全长 mRNA 异构体的有效计算工具不断发展,但由于 RNA-seq 实验中存在大量信息丢失,因此仍然难以从短序列读段中准确识别 mRNA 异构体。在这里,我们引入了一种新的统计方法,注释辅助异构体发现(AIDE),这是第一个通过实施基于测试的模型选择原则直接控制假异构体发现的方法。AIDE 逐步和保守地解决异构体发现问题,优先考虑注释异构体,并精确识别新的异构体,这些异构体的添加可以显著提高对观察到的 RNA-seq 读段的解释。我们基于多个模拟和真实的 RNA-seq 数据集评估了 AIDE 的性能,随后进行了 PCR-Sanger 测序验证。我们的结果表明,AIDE 有效地利用了注释信息来补偿由于短读长而导致的信息丢失。与三个最先进的方法 Cufflinks、SLIDE 和 StringTie 相比,AIDE 在异构体发现中具有最高的精度,在异构体丰度估计中的错误率最低。作为转录组分析的强大生物信息学工具,AIDE 使研究人员能够以高置信度发现新的转录本。