Suppr超能文献

通过 Mettl8 依赖性线粒体 tRNA mC 修饰的皮质神经发生的转录后调控。

Epitranscriptomic regulation of cortical neurogenesis via Mettl8-dependent mitochondrial tRNA mC modification.

机构信息

Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Cell Stem Cell. 2023 Mar 2;30(3):300-311.e11. doi: 10.1016/j.stem.2023.01.007. Epub 2023 Feb 9.

Abstract

Increasing evidence implicates the critical roles of various epitranscriptomic RNA modifications in different biological processes. Methyltransferase METTL8 installs 3-methylcytosine (mC) modification of mitochondrial tRNAs in vitro; however, its role in intact biological systems is unknown. Here, we show that Mettl8 is localized in mitochondria and installs mC specifically on mitochondrial tRNA in mouse embryonic cortical neural stem cells. At molecular and cellular levels, Mettl8 deletion in cortical neural stem cells leads to reduced mitochondrial protein translation and attenuated respiration activity. At the functional level, conditional Mettl8 deletion in mice results in impaired embryonic cortical neural stem cell maintenance in vivo, which can be rescued by pharmacologically enhancing mitochondrial functions. Similarly, METTL8 promotes mitochondrial protein expression and neural stem cell maintenance in human forebrain cortical organoids. Together, our study reveals a conserved epitranscriptomic mechanism of Mettl8 and mitochondrial tRNA mC modification in maintaining embryonic cortical neural stem cells in mice and humans.

摘要

越来越多的证据表明,各种转录后 RNA 修饰在不同的生物学过程中起着关键作用。甲基转移酶 METTL8 在体外将 3-甲基胞嘧啶(mC)修饰线粒体 tRNA;然而,其在完整生物系统中的作用尚不清楚。在这里,我们表明 Mettl8 定位于线粒体,并在线粒体 tRNA 上特异性安装 mC 在小鼠胚胎皮质神经干细胞中。在分子和细胞水平上,皮质神经干细胞中 Mettl8 的缺失导致线粒体蛋白翻译减少和呼吸活性减弱。在功能水平上,条件性 Mettl8 在小鼠中的缺失导致胚胎皮质神经干细胞在体内维持受损,这可以通过药理学增强线粒体功能来挽救。同样,METTL8 促进线粒体蛋白表达和神经干细胞维持在人类大脑皮质类器官中。总之,我们的研究揭示了 Mettl8 和线粒体 tRNA mC 修饰在维持小鼠和人类胚胎皮质神经干细胞中的保守转录后机制。

相似文献

1
Epitranscriptomic regulation of cortical neurogenesis via Mettl8-dependent mitochondrial tRNA mC modification.
Cell Stem Cell. 2023 Mar 2;30(3):300-311.e11. doi: 10.1016/j.stem.2023.01.007. Epub 2023 Feb 9.
3
4
Methyltransferase METTL8 is required for 3-methylcytosine modification in human mitochondrial tRNAs.
J Biol Chem. 2022 Apr;298(4):101788. doi: 10.1016/j.jbc.2022.101788. Epub 2022 Mar 3.
5
Balancing of mitochondrial translation through METTL8-mediated mC modification of mitochondrial tRNAs.
Mol Cell. 2021 Dec 2;81(23):4810-4825.e12. doi: 10.1016/j.molcel.2021.10.018. Epub 2021 Nov 12.
6
Mitochondrial RNA mC methyltransferase METTL8 relies on an isoform-specific N-terminal extension and modifies multiple heterogenous tRNAs.
Sci Bull (Beijing). 2023 Sep 30;68(18):2094-2105. doi: 10.1016/j.scib.2023.08.002. Epub 2023 Aug 2.
7
Three distinct 3-methylcytidine (mC) methyltransferases modify tRNA and mRNA in mice and humans.
J Biol Chem. 2017 Sep 1;292(35):14695-14703. doi: 10.1074/jbc.M117.798298. Epub 2017 Jun 27.
8
Molecular basis for human mitochondrial tRNA m3C modification by alternatively spliced METTL8.
Nucleic Acids Res. 2022 Apr 22;50(7):4012-4028. doi: 10.1093/nar/gkac184.
9
Temporal Control of Mammalian Cortical Neurogenesis by mA Methylation.
Cell. 2017 Nov 2;171(4):877-889.e17. doi: 10.1016/j.cell.2017.09.003. Epub 2017 Sep 28.
10
METTLing in the right place: METTL8 is a mitochondrial tRNA-specific methyltransferase.
Mol Cell. 2021 Dec 2;81(23):4765-4767. doi: 10.1016/j.molcel.2021.11.009.

引用本文的文献

1
Emerging roles of ribosome translation in stem cells and stem cell therapy - a review.
Cell Biosci. 2025 May 28;15(1):71. doi: 10.1186/s13578-025-01412-y.
2
Targeting tRNA methyltransferases: from molecular mechanisms to drug discovery.
Sci China Life Sci. 2025 May 7. doi: 10.1007/s11427-024-2886-2.
3
Unraveling Neurodevelopment: Synergistic Effects of Intrinsic Genetic Programs and Extrinsic Environmental Cues.
Adv Sci (Weinh). 2025 Jun;12(22):e2414890. doi: 10.1002/advs.202414890. Epub 2025 May 5.
4
Transcriptome-wide mapping of N3-methylcytidine modification at single-base resolution.
Nucleic Acids Res. 2025 Feb 27;53(5). doi: 10.1093/nar/gkaf153.
5
Brain-wide neuronal circuit connectome of human glioblastoma.
Nature. 2025 May;641(8061):222-231. doi: 10.1038/s41586-025-08634-7. Epub 2025 Jan 16.
6
mA/YTHDF2-mediated mRNA decay targets TGF-β signaling to suppress the quiescence acquisition of early postnatal mouse hippocampal NSCs.
Cell Stem Cell. 2025 Jan 2;32(1):144-156.e8. doi: 10.1016/j.stem.2024.10.002. Epub 2024 Oct 29.
7
tRNA and tsRNA: From Heterogeneity to Multifaceted Regulators.
Biomolecules. 2024 Oct 21;14(10):1340. doi: 10.3390/biom14101340.
8
The potential of RNA methylation in the treatment of cardiovascular diseases.
iScience. 2024 Jul 20;27(8):110524. doi: 10.1016/j.isci.2024.110524. eCollection 2024 Aug 16.
9
METTL Family in Healthy and Disease.
Mol Biomed. 2024 Aug 19;5(1):33. doi: 10.1186/s43556-024-00194-y.
10
Epigenetic maintenance of adult neural stem cell quiescence in the mouse hippocampus via Setd1a.
Nat Commun. 2024 Jul 6;15(1):5674. doi: 10.1038/s41467-024-50010-y.

本文引用的文献

1
Setting the clock of neural progenitor cells during mammalian corticogenesis.
Semin Cell Dev Biol. 2023 Jun;142:43-53. doi: 10.1016/j.semcdb.2022.05.013. Epub 2022 May 27.
2
Roles and dynamics of 3-methylcytidine in cellular RNAs.
Trends Biochem Sci. 2022 Jul;47(7):596-608. doi: 10.1016/j.tibs.2022.03.004. Epub 2022 Mar 30.
3
Molecular basis for human mitochondrial tRNA m3C modification by alternatively spliced METTL8.
Nucleic Acids Res. 2022 Apr 22;50(7):4012-4028. doi: 10.1093/nar/gkac184.
4
Methyltransferase METTL8 is required for 3-methylcytosine modification in human mitochondrial tRNAs.
J Biol Chem. 2022 Apr;298(4):101788. doi: 10.1016/j.jbc.2022.101788. Epub 2022 Mar 3.
5
PUS7 deficiency in human patients causes profound neurodevelopmental phenotype by dysregulating protein translation.
Mol Genet Metab. 2022 Mar;135(3):221-229. doi: 10.1016/j.ymgme.2022.01.103. Epub 2022 Feb 1.
6
Pseudouridine synthases modify human pre-mRNA co-transcriptionally and affect pre-mRNA processing.
Mol Cell. 2022 Feb 3;82(3):645-659.e9. doi: 10.1016/j.molcel.2021.12.023. Epub 2022 Jan 19.
8
Partitioning RNAs by length improves transcriptome reconstruction from short-read RNA-seq data.
Nat Biotechnol. 2022 May;40(5):741-750. doi: 10.1038/s41587-021-01136-7. Epub 2022 Jan 10.
9
The Critical Contribution of Pseudouridine to mRNA COVID-19 Vaccines.
Front Cell Dev Biol. 2021 Nov 4;9:789427. doi: 10.3389/fcell.2021.789427. eCollection 2021.
10
Balancing of mitochondrial translation through METTL8-mediated mC modification of mitochondrial tRNAs.
Mol Cell. 2021 Dec 2;81(23):4810-4825.e12. doi: 10.1016/j.molcel.2021.10.018. Epub 2021 Nov 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验