Parkatzidis Kostas, Truong Nghia P, Rolland Manon, Lutz-Bueno Viviane, Pilkington Emily H, Mezzenga Raffaele, Anastasaki Athina
Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich, 8093, Switzerland.
Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
Angew Chem Int Ed Engl. 2022 Feb 14;61(8):e202113424. doi: 10.1002/anie.202113424. Epub 2022 Jan 11.
Controlled polymerizations have enabled the production of nanostructured materials with different shapes, each exhibiting distinct properties. Despite the importance of shape, current morphological transformation strategies are limited in polymer scope, alter the chemical structure, require high temperatures, and are fairly tedious. Herein we present a rapid and versatile morphological transformation strategy that operates at room temperature and does not impair the chemical structure of the constituent polymers. By simply adding a molecular transformer to an aqueous dispersion of polymeric nanoparticles, a rapid evolution to the next higher-order morphology was observed, yielding a range of morphologies from a single starting material. Significantly, this approach can be applied to nanoparticles produced by disparate block copolymers obtained by various synthetic techniques including emulsion polymerization, polymerization-induced self-assembly and traditional solution self-assembly.
可控聚合能够生产出具有不同形状的纳米结构材料,每种材料都具有独特的性能。尽管形状很重要,但目前的形态转变策略在聚合物范围上有限,会改变化学结构,需要高温,而且相当繁琐。在此,我们提出了一种快速且通用的形态转变策略,该策略在室温下操作,不会损害组成聚合物的化学结构。通过简单地将分子转变剂添加到聚合物纳米颗粒的水分散体中,观察到快速演变成下一个更高阶的形态,从单一原料产生了一系列形态。值得注意的是,这种方法可以应用于通过各种合成技术(包括乳液聚合、聚合诱导自组装和传统溶液自组装)获得的不同嵌段共聚物制备的纳米颗粒。