R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States.
Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.
ACS Appl Bio Mater. 2021 Apr 19;4(4):3101-3112. doi: 10.1021/acsabm.0c01482. Epub 2021 Mar 18.
Supported lipid bilayers (SLBs) hold tremendous promise as cellular-mimetic structures that can be readily interfaced with analytical and screening tools. The incorporation of transmembrane proteins, a key component in biological membranes, is a significant challenge that has limited the capacity of SLBs to be used for a variety of biotechnological applications. Here, we report an approach using a cell-free expression system for the cotranslational insertion of membrane proteins into hybrid-supported lipid bilayers (HSLBs) containing phospholipids and diblock copolymers. We use cell-free expression techniques and a model transmembrane protein, the large conductance mechanosensitive channel (MscL), to demonstrate two routes to integrate a channel protein into a HSLB. We show that HSLBs can be assembled with integrated membrane proteins by either cotranslational integration of protein into hybrid vesicles, followed by fusion of these proteoliposomes to form a HSLB, or preformation of a HSLB followed by the cell-free synthesis of the protein directly into the HSLB. Both approaches lead to the assembly of HSLBs with oriented proteins. Notably, using single-particle tracking, we find that the presence of diblock copolymers facilitates membrane protein mobility in the HSLBs, a critical feature that has been difficult to achieve in pure lipid SLBs. The approach presented here to integrate membrane proteins directly into preformed HSLBs using cell-free cotranslational insertion is an important step toward enabling many biotechnology applications, including biosensing, drug screening, and material platforms requiring cell membrane-like interfaces that bring together the abiotic and biotic worlds and rely on transmembrane proteins as transduction elements.
支持的脂质双层 (SLB) 作为类似于细胞的结构具有巨大的潜力,可以与分析和筛选工具轻松接口。跨膜蛋白的掺入是生物膜的关键组成部分,这是一个重大挑战,限制了 SLB 用于各种生物技术应用的能力。在这里,我们报告了一种使用无细胞表达系统的方法,用于将膜蛋白共翻译插入含有磷脂和两亲嵌段共聚物的杂交支撑脂质双层 (HSLB) 中。我们使用无细胞表达技术和一种模型跨膜蛋白,即大电导机械敏感通道 (MscL),来证明将通道蛋白整合到 HSLB 中的两种途径。我们表明,通过将蛋白质共翻译插入杂交囊泡中,然后融合这些脂质体形成 HSLB,或者先形成 HSLB,然后无细胞合成蛋白质直接进入 HSLB,都可以将 HSLB 与整合的膜蛋白组装在一起。这两种方法都导致了具有定向蛋白质的 HSLB 的组装。值得注意的是,使用单粒子跟踪,我们发现两亲嵌段共聚物的存在有利于 HSLB 中膜蛋白的迁移,这是在纯脂质 SLB 中难以实现的关键特征。本文提出的使用无细胞共翻译插入将膜蛋白直接整合到预先形成的 HSLB 中的方法是实现许多生物技术应用的重要步骤,包括生物传感、药物筛选和需要细胞膜样界面的材料平台,这些平台将无生命世界和有生命世界结合在一起,并依赖跨膜蛋白作为转导元件。