Suppr超能文献

用于具有增强稳定性的仿生生物电子学的混合支撑脂质双层

Hybrid Supported Lipid Bilayers for Bioinspired Bioelectronics with Enhanced Stability.

机构信息

Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.

Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States.

出版信息

ACS Appl Mater Interfaces. 2023 May 24;15(20):24638-24647. doi: 10.1021/acsami.3c01054. Epub 2023 May 9.

Abstract

A promising new class of biosensors leverages the sensing mechanisms of living cells by incorporating native transmembrane proteins into biomimetic membranes. Conducting polymers (CPs) can further improve the detection of electrochemical signals from these biological recognition elements through their low electrical impedance. Supported lipid bilayers (SLBs) on CPs mimic the structure and biology of the cell membrane to enable such sensing, but their extrapolation to new target analytes and healthcare applications has been difficult due to their poor stability and limited membrane properties. Blending native phospholipids with synthetic block copolymers to create a hybrid SLB (HSLB) may address these challenges by allowing for the tuning of chemical and physical properties during membrane design. We establish the first example of HSLBs on a CP device and show that polymer incorporation enhances bilayer resilience and thus offers important benefits toward bio-hybrid bioelectronics for sensing applications. Importantly, HSLBs outperform traditional phospholipid bilayers in stability by exhibiting strong electrical sealing after exposure to physiologically relevant enzymes that cause phospholipid hydrolysis and membrane degradation. We investigate the impact of HSLB composition on membranes and device performance and demonstrate the ability to finely adjust the lateral diffusivity of HSLBs with modest changes in block copolymer content through a large compositional range. The inclusion of the block copolymer into the bilayer does not disrupt electrical sealing on CP electrodes, an essential metric for electrochemical sensors, or the insertion of a representative transmembrane protein. This work interfacing tunable and stable HSLBs with CPs paves the way for future bioinspired sensors that combine the exciting developments from both bioelectronics and synthetic biology.

摘要

一类很有前景的新型生物传感器通过将天然跨膜蛋白整合到仿生膜中来利用活细胞的传感机制。导电聚合物 (CP) 可以通过其低电阻进一步改善这些生物识别元件的电化学信号检测。CP 上的支撑脂质双层 (SLB) 通过模拟细胞膜的结构和生物学来实现这种传感,但由于其稳定性差和膜性能有限,它们很难扩展到新的目标分析物和医疗保健应用。将天然磷脂与合成嵌段共聚物混合以创建混合 SLB (HSLB) 可能会通过在膜设计过程中调整化学和物理性质来解决这些挑战。我们在 CP 器件上建立了第一个 HSLB 的例子,并表明聚合物的掺入增强了双层的弹性,从而为传感应用的生物混合生物电子学提供了重要的优势。重要的是,HSLB 在稳定性方面优于传统的磷脂双层,在暴露于引起磷脂水解和膜降解的生理相关酶后,表现出很强的电密封。我们研究了 HSLB 组成对膜和器件性能的影响,并通过在大组成范围内进行适度的嵌段共聚物含量变化,证明了精细调整 HSLB 横向扩散性的能力。嵌段共聚物进入双层不会破坏 CP 电极上电密封的重要指标,这对电化学传感器或代表性跨膜蛋白的插入也是如此。这项将可调且稳定的 HSLB 与 CP 接口的工作为未来的仿生传感器铺平了道路,这些传感器结合了生物电子学和合成生物学的令人兴奋的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验