Suppr超能文献

可拉伸网格纳米电子学用于 3D 单细胞慢性脑类器官电生理研究

Stretchable Mesh Nanoelectronics for 3D Single-Cell Chronic Electrophysiology from Developing Brain Organoids.

机构信息

School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA.

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.

出版信息

Adv Mater. 2022 Mar;34(11):e2106829. doi: 10.1002/adma.202106829. Epub 2022 Feb 6.

Abstract

Human induced pluripotent stem cell derived brain organoids have shown great potential for studies of human brain development and neurological disorders. However, quantifying the evolution of the electrical properties of brain organoids during development is currently limited by the measurement techniques, which cannot provide long-term stable 3D bioelectrical interfaces with developing brain organoids. Here, a cyborg brain organoid platform is reported, in which "tissue-like" stretchable mesh nanoelectronics are designed to match the mechanical properties of brain organoids and to be folded by the organogenetic process of progenitor or stem cells, distributing stretchable electrode arrays across the 3D organoids. The tissue-wide integrated stretchable electrode arrays show no interruption to brain organoid development, adapt to the volume and morphological changes during brain organoid organogenesis, and provide long-term stable electrical contacts with neurons within brain organoids during development. The seamless and noninvasive coupling of electrodes to neurons enables long-term stable, continuous recording and captures the emergence of single-cell action potentials from early-stage brain organoid development.

摘要

人类诱导多能干细胞衍生的脑类器官在研究人类大脑发育和神经紊乱方面显示出巨大的潜力。然而,目前量化脑类器官在发育过程中电特性的演变受到测量技术的限制,这些技术无法为发育中的脑类器官提供长期稳定的 3D 生物电接口。在这里,报道了一种“类组织”的可拉伸网格纳电子器件的脑类器官平台,该平台的设计旨在匹配脑类器官的机械性能,并通过祖细胞或干细胞的器官发生过程进行折叠,将可拉伸电极阵列分布在 3D 脑类器官上。全组织集成的可拉伸电极阵列不会中断脑类器官的发育,适应脑类器官器官发生过程中的体积和形态变化,并在发育过程中为脑类器官内的神经元提供长期稳定的电接触。电极与神经元的无缝和非侵入性耦合能够实现长期稳定的连续记录,并捕获早期脑类器官发育中单细胞动作电位的出现。

相似文献

3
Emerging Bioelectronics for Brain Organoid Electrophysiology.脑类器官电生理学中的新兴生物电子学。
J Mol Biol. 2022 Feb 15;434(3):167165. doi: 10.1016/j.jmb.2021.167165. Epub 2021 Jul 19.
4
Mesh Nanoelectronics: Seamless Integration of Electronics with Tissues.网格纳米电子学:电子与组织的无缝集成。
Acc Chem Res. 2018 Feb 20;51(2):309-318. doi: 10.1021/acs.accounts.7b00547. Epub 2018 Jan 30.

引用本文的文献

1
4
Opportunities and Challenges of Brain-on-a-Chip Interfaces.脑机接口的机遇与挑战
Cyborg Bionic Syst. 2025 Jun 17;6:0287. doi: 10.34133/cbsystems.0287. eCollection 2025.
7
Brain organoids: building higher-order complexity and neural circuitry models.脑类器官:构建更高阶复杂性和神经回路模型
Trends Biotechnol. 2025 Jul;43(7):1583-1598. doi: 10.1016/j.tibtech.2025.02.009. Epub 2025 Apr 12.
9
Exploring human brain development and disease using assembloids.利用类组装体探索人类大脑发育与疾病
Neuron. 2025 Apr 16;113(8):1133-1150. doi: 10.1016/j.neuron.2025.02.010. Epub 2025 Mar 18.
10
Harnessing Intelligence from Brain Cells In Vitro.从体外脑细胞中获取智能
Neuroscientist. 2025 Mar 13:10738584251321438. doi: 10.1177/10738584251321438.

本文引用的文献

3
Integrated analysis of multimodal single-cell data.多模态单细胞数据的综合分析。
Cell. 2021 Jun 24;184(13):3573-3587.e29. doi: 10.1016/j.cell.2021.04.048. Epub 2021 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验