School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA.
School of Engineering and Applied Sciences, Harvard University, Boston, MA, 02134, USA.
J Mol Biol. 2022 Feb 15;434(3):167165. doi: 10.1016/j.jmb.2021.167165. Epub 2021 Jul 19.
Human brain organoids are generated from three-dimensional (3D) cultures of human induced pluripotent stem cells and embryonic stem cells, which partially replicate the development and complexity of the human brain. Many methods have been used to characterize the structural and molecular phenotypes of human brain organoids. Further understanding the electrophysiological phenotypes of brain organoids requires advanced electrophysiological measurement technologies to achieve long-term stable 3D recording over the time course of the organoid development with single-cell, millisecond spatiotemporal resolution. In this review, first, we briefly introduce the development, generation, and applications of human brain organoids. We then discuss the conventional methods used for characterizing the morphological, genetic, and electrical properties of brain organoids. Next, we highlight the need for characterizing electrophysiological properties of brain organoids in a minimally invasive manner. In particular, we discuss recent advances in the multi-electrode array (MEA), 3D bioelectronics, and flexible bioelectronics and their applications in brain organoid electrophysiological measurement. In addition, we introduce the recently developed cyborg organoids platform as an emerging tool for the long-term stable 3D characterization of the brain organoids electrophysiology at high spatiotemporal resolution. Finally, we discuss the perspectives of new technologies that could achieve the high-throughput, multimodal characterizations from the same brain organoids.
人类脑类器官源自于三维(3D)培养的人类诱导多能干细胞和胚胎干细胞,部分复制了人脑的发育和复杂性。已经有许多方法被用于描述人类脑类器官的结构和分子表型。为了进一步了解脑类器官的电生理表型,需要先进的电生理测量技术来实现对类器官发育过程中具有单细胞、毫秒级时空分辨率的长期稳定的 3D 记录。在这篇综述中,首先,我们简要介绍了人类脑类器官的发展、生成和应用。然后,我们讨论了用于描述脑类器官形态、遗传和电特性的常规方法。接下来,我们强调了以微创方式描述脑类器官电生理特性的必要性。特别是,我们讨论了多电极阵列(MEA)、3D 生物电子学和柔性生物电子学的最新进展及其在脑类器官电生理测量中的应用。此外,我们介绍了最近开发的半机械人器官平台,作为一种新兴工具,可用于以高时空分辨率长期稳定地描述脑类器官的电生理学。最后,我们讨论了可以实现从同一个脑类器官进行高通量、多模态特征描述的新技术的前景。