Suppr超能文献

预测未来引起关注的 SARS-CoV-2 变异株的突变驱动因素。

Predicting the mutational drivers of future SARS-CoV-2 variants of concern.

机构信息

Vir Biotechnology, San Francisco, CA 94158, USA.

Department of Biology, Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA.

出版信息

Sci Transl Med. 2022 Feb 23;14(633):eabk3445. doi: 10.1126/scitranslmed.abk3445.

Abstract

SARS-CoV-2 evolution threatens vaccine- and natural infection-derived immunity as well as the efficacy of therapeutic antibodies. To improve public health preparedness, we sought to predict which existing amino acid mutations in SARS-CoV-2 might contribute to future variants of concern. We tested the predictive value of features comprising epidemiology, evolution, immunology, and neural network-based protein sequence modeling, and identified primary biological drivers of SARS-CoV-2 intra-pandemic evolution. We found evidence that ACE2-mediated transmissibility and resistance to population-level host immunity has waxed and waned as a primary driver of SARS-CoV-2 evolution over time. We retroactively identified with high accuracy (area under the receiver operator characteristic curve, AUROC=0.92-0.97) mutations that will spread, at up to four months in advance, across different phases of the pandemic. The behavior of the model was consistent with a plausible causal structure wherein epidemiological covariates combine the effects of diverse and shifting drivers of viral fitness. We applied our model to forecast mutations that will spread in the future and characterize how these mutations affect the binding of therapeutic antibodies. These findings demonstrate that it is possible to forecast the driver mutations that could appear in emerging SARS-CoV-2 variants of concern. We validate this result against Omicron, showing elevated predictive scores for its component mutations prior to emergence, and rapid score increase across daily forecasts during emergence. This modeling approach may be applied to any rapidly evolving pathogens with sufficiently dense genomic surveillance data, such as influenza, and unknown future pandemic viruses.

摘要

SARS-CoV-2 的进化威胁着疫苗和自然感染衍生的免疫,以及治疗性抗体的疗效。为了改善公共卫生的准备工作,我们试图预测 SARS-CoV-2 中哪些现有的氨基酸突变可能导致未来的关注变体。我们测试了包括流行病学、进化、免疫学和基于神经网络的蛋白质序列建模在内的特征的预测价值,并确定了 SARS-CoV-2 大流行期间内进化的主要生物学驱动因素。我们有证据表明,ACE2 介导的传染性和对人群水平宿主免疫的抵抗力,随着时间的推移,一直是 SARS-CoV-2 进化的主要驱动因素。我们以前瞻性的方式(接受者操作特征曲线下的面积,AUROC=0.92-0.97)准确地识别了将在未来四个月内传播的突变,这些突变跨越了大流行的不同阶段。该模型的行为与一种合理的因果结构一致,其中流行病学协变量结合了病毒适应性的不同和不断变化的驱动因素的影响。我们应用我们的模型来预测未来将传播的突变,并描述这些突变如何影响治疗性抗体的结合。这些发现表明,有可能预测可能出现在新兴的 SARS-CoV-2 关注变体中的驱动突变。我们针对奥密克戎验证了这一结果,显示其成分突变在出现之前的预测分数升高,并且在出现期间每日预测的分数迅速增加。这种建模方法可以应用于任何具有足够密集的基因组监测数据的快速进化病原体,如流感,以及未知的未来大流行病毒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2bd/8939770/56c99a97989e/scitranslmed.abk3445-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验