Suppr超能文献

RNA 引导的级联-Cas3 双缺口切割用于高效大规模基因组工程。

Double nicking by RNA-directed Cascade-nCas3 for high-efficiency large-scale genome engineering.

机构信息

College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China.

State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, School of Life Sciences, Hubei University, Wuhan 430062, People's Republic of China.

出版信息

Open Biol. 2022 Jan;12(1):210241. doi: 10.1098/rsob.210241. Epub 2022 Jan 12.

Abstract

New CRISPR-based genome editing technologies are developed to continually drive advances in life sciences, which, however, are predominantly derived from systems of Type II CRISPR-Cas9 and Type V CRISPR-Cas12a for eukaryotes. Here we report a novel CRISPR-n(nickase)Cas3 genome editing tool established upon a Type I-F system. We demonstrate that nCas3 variants can be created by alanine-substituting any catalytic residue of the Cas3 helicase domain. While nCas3 overproduction via plasmid shows severe cytotoxicity, an nCas3 introduces targeted double-strand breaks, facilitating genome editing without visible cell killing. By harnessing this CRISPR-nCas3 gene insertion, nucleotide substitution and deletion of genes or genomic DNA stretches can be consistently accomplished with near-100% efficiencies, including simultaneous removal of two large genomic fragments. Our work describes the first establishment of a CRISPR-nCas3-based genome editing technology, thereby offering a simple, yet useful approach to convert the naturally most abundantly occurring Type I systems into advanced genome editing tools to facilitate high-throughput prokaryotic engineering.

摘要

新型基于 CRISPR 的基因组编辑技术不断推动生命科学的进步,但主要源自于 II 型 CRISPR-Cas9 和 V 型 CRISPR-Cas12a 这两种用于真核生物的系统。在此,我们报告了一种新型基于 I-F 型系统的 CRISPR-n(切口酶)Cas3 基因组编辑工具。我们证明,通过将 Cas3 解旋酶结构域中的任何催化残基突变为丙氨酸,可以产生 nCas3 变体。虽然 nCas3 通过质粒的过表达会导致严重的细胞毒性,但 nCas3 可以引入靶向双链断裂,在不造成明显细胞杀伤的情况下促进基因组编辑。通过利用这种 CRISPR-nCas3 基因插入技术,可以一致地完成基因或基因组 DNA 片段的核苷酸取代和缺失,包括同时去除两个大的基因组片段。我们的工作描述了第一个基于 CRISPR-nCas3 的基因组编辑技术的建立,从而提供了一种简单而有用的方法,将自然中最丰富的 I 型系统转化为先进的基因组编辑工具,以促进高通量的原核工程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1d4/8753164/d1837d9fd582/rsob210241f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验