Suppr超能文献

脊柱椎间融合 cage 材料和设计的选择影响沉降和骨整合性能。

Choice of Spinal Interbody Fusion Cage Material and Design Influences Subsidence and Osseointegration Performance.

机构信息

Spine Pain Begone Clinic, San Antonio, Texas, USA.

NuVasive Inc., San Diego, California, USA.

出版信息

World Neurosurg. 2022 Jun;162:e626-e634. doi: 10.1016/j.wneu.2022.03.087. Epub 2022 Mar 26.

Abstract

OBJECTIVE

The objective of the study was to quantify the effect of cage material (titanium-alloy vs. polyetheretherketone or PEEK) and design (porous vs. solid) on subsidence and osseointegration.

METHODS

Three lateral cages (solid PEEK, solid titanium, and 3-dimension-printed porous titanium cages) were evaluated for cage stiffness, subsidence compression stiffness, and dynamic subsidence displacement under simulated postoperative spine loading. Dowel-shaped implants made of grit-blasted solid titanium alloy (solid titanium) and porous titanium were fabricated using commercially available processes. Samples were processed for mechanical push-out testing and polymethylmethacrylate histology following an established ovine bone implantation model.

RESULTS

The solid titanium cage exhibited the greatest stiffness (57.1 ± 0.6 kN/mm), followed by the porous titanium cage (40.4 ± 0.3 kN/mm) and the solid PEEK cage (37.1 ± 1.2 kN/mm). In the clinically relevant dynamic subsidence, the porous titanium cage showed the least amount of subsidence displacement (0.195 ± 0.012 mm), significantly less than that of the solid PEEK cage (0.328 ± 0.020 mm) and the solid titanium cage (0.538 ± 0.027 mm). Bony on-growth was noted histologically on all implant materials; however, only the porous titanium supported bony ingrowth with marked quantities of bone formed within the interconnected pores through 12 weeks. Functional differences in osseointegration were noted between groups during push-out testing. The porous titanium showed the highest maximum shear stress at 12 weeks and was the only group that demonstrated significant improvement (4-12 weeks).

CONCLUSIONS

The choice of material and design is critical to cage mechanical and biological performances. A porous titanium cage can reduce subsidence risk and generate biological stability through bone on-growth and ingrowth.

摘要

目的

本研究旨在量化 cage 材料(钛合金与聚醚醚酮或 PEEK)和设计(多孔与实心)对沉降和骨整合的影响。

方法

评估了三种侧向 cage(实心 PEEK、实心钛和 3D 打印多孔钛 cage)的 cage 刚度、沉降压缩刚度以及在模拟术后脊柱加载下的动态沉降位移。使用商业上可用的工艺制造了喷砂处理的实心钛合金(实心钛)和多孔钛制成的钉状植入物。样本经过机械推挤测试和聚甲基丙烯酸甲酯组织学处理,采用已建立的绵羊骨植入模型。

结果

实心钛 cage 表现出最大的刚度(57.1±0.6 kN/mm),其次是多孔钛 cage(40.4±0.3 kN/mm)和实心 PEEK cage(37.1±1.2 kN/mm)。在临床相关的动态沉降中,多孔钛 cage 显示出最小的沉降位移(0.195±0.012 mm),明显小于实心 PEEK cage(0.328±0.020 mm)和实心钛 cage(0.538±0.027 mm)。所有植入材料均在组织学上观察到骨的生长;然而,只有多孔钛支持骨的向内生长,在 12 周内形成了大量的骨在相互连接的孔内。推挤测试中,各组的骨整合功能差异明显。多孔钛在 12 周时显示出最高的最大剪切应力,并且是唯一显示出显著改善(4-12 周)的组。

结论

材料和设计的选择对 cage 的机械和生物学性能至关重要。多孔钛 cage 可通过骨生长和向内生长降低沉降风险并产生生物稳定性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验