Suppr超能文献

用于增强血液循环和癌症治疗的仿生介孔二氧化硅纳米颗粒

Biomimetic Mesoporous Silica Nanoparticles for Enhanced Blood Circulation and Cancer Therapy.

作者信息

Peng Haibao, Xu Zhuoyuan, Wang Yongcheng, Feng Nianping, Yang Wuli, Tang Jing

机构信息

Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.

Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States.

出版信息

ACS Appl Bio Mater. 2020 Nov 16;3(11):7849-7857. doi: 10.1021/acsabm.0c01014. Epub 2020 Oct 13.

Abstract

The biomimetic cell membrane camouflaged approach provides numerous opportunities in designing therapeutic platforms for various biomedical applications. It is necessary to understand the engineering of physicochemical properties on materials' surfaces for target biological functions to develop the next-generation anticancer nanomedicines. Herein, we envelope mesoporous silica nanoparticles (MSNs) with red blood cell (RBC) membrane ghosts to obtain MSN@RBC, which possesses significantly stronger physiological stability and longer circulation time than bare MSNs. The surface functionalization of the core material is a critical design parameter for RBC membrane coating efficiency. Therefore, various surface functionalization (-COOH, -SH, -NH) modifications were performed on MSNs. Compared with other groups, MSN-COOH possessed a better RBC membrane coating efficiency. Then, MSN-COOH of different particle sizes were coated by RBC-derived vesicle membranes. The results indicated that smaller types were able to last longer in blood circulation and accumulate more in target sites than the larger ones. Overall, MSN-ICG@RBC with surface functionalization of -COOH and optimized particle size of 60 nm led to efficient imaging-guided photothermal cancer treatment and could be potentially appealing to actual clinical applications in the future.

摘要

仿生细胞膜伪装方法为设计用于各种生物医学应用的治疗平台提供了众多机会。为了开发下一代抗癌纳米药物,有必要了解材料表面物理化学性质的工程设计以实现目标生物学功能。在此,我们用红细胞(RBC)膜囊泡包裹介孔二氧化硅纳米颗粒(MSN)以获得MSN@RBC,其生理稳定性明显强于裸MSN,循环时间也更长。核心材料的表面功能化是红细胞膜包被效率的关键设计参数。因此,对MSN进行了各种表面功能化(-COOH、-SH、-NH)修饰。与其他组相比,MSN-COOH具有更好的红细胞膜包被效率。然后,用源自红细胞的囊泡膜包被不同粒径的MSN-COOH。结果表明,较小粒径的MSN在血液循环中持续时间更长,在靶位点的积累也比大粒径的更多。总体而言,具有-COOH表面功能化且优化粒径为60 nm的MSN-ICG@RBC可实现高效的成像引导光热癌症治疗,未来可能对实际临床应用具有吸引力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验