School of Mechanical Engineering, Northeast Electric Power University, 132012 Jilin, China.
Comput Intell Neurosci. 2019 Jan 21;2019:5627156. doi: 10.1155/2019/5627156. eCollection 2019.
This paper proposes a novel classification framework and a novel data reduction method to distinguish multiclass motor imagery (MI) electroencephalography (EEG) for brain computer interface (BCI) based on the manifold of covariance matrices in a Riemannian perspective. For method 1, a subject-specific decision tree (SSDT) framework with filter geodesic minimum distance to Riemannian mean (FGMDRM) is designed to identify MI tasks and reduce the classification error in the nonseparable region of FGMDRM. Method 2 includes a feature extraction algorithm and a classification algorithm. The feature extraction algorithm combines semisupervised joint mutual information (-JMI) with general discriminate analysis (GDA), namely, SJGDA, to reduce the dimension of vectors in the Riemannian tangent plane. And the classification algorithm replaces the FGMDRM in method 1 with k-nearest neighbor (KNN), named SSDT-KNN. By applying method 2 on BCI competition IV dataset 2a, the kappa value has been improved from 0.57 to 0.607 compared to the winner of dataset 2a. And method 2 also obtains high recognition rate on the other two datasets.
本文提出了一种新颖的分类框架和数据降维方法,以基于协方差矩阵流形的黎曼观点区分基于脑机接口 (BCI) 的多类运动想象 (MI) 脑电图 (EEG)。方法 1 中,设计了一个具有滤波器测地最小距离到黎曼均值 (FGMDRM) 的基于个体的决策树 (SSDT) 框架,以识别 MI 任务并减少 FGMDRM 不可分离区域中的分类误差。方法 2 包括特征提取算法和分类算法。特征提取算法将半监督联合互信息 (-JMI) 与广义判别分析 (GDA) 相结合,即 SJGDA,以降低黎曼切平面向量的维数。分类算法用 K 最近邻 (KNN) 替换方法 1 中的 FGMDRM,命名为 SSDT-KNN。通过在 BCI 竞赛数据集 2a 上应用方法 2,与数据集 2a 的获胜者相比,kappa 值从 0.57 提高到 0.607。而且方法 2 在另外两个数据集上也获得了较高的识别率。