Physical Examination, Xintai People's Hospital, Tai'an, Shandong, China.
Department of Ultrasound, The Second Clinical Medical College,Jinan University, Guangdong, China.
J Clin Ultrasound. 2022 Feb;50(2):296-301. doi: 10.1002/jcu.23143. Epub 2022 Jan 17.
To evaluate if an automatic classification of rheumatoid arthritis (RA) metacarpophalangeal joint conditions in ultrasound images is feasible by deep learning (DL) method, to provide a more objective, automated, and fast way of RA diagnosis in clinical setting.
DenseNet-based DL model was used and both training and testing are implemented in TensorFlow 1.13.1 with Keras DL libraries. The area under curve (AUC), accuracy, sensitivity, and specificity values with 95% CIs were reported. The statistical analysis was performed by using scikit-learn libraries in Python 3.7.
A total of 1337 RA ultrasound images were acquired from 208 patients, the number of images is 313, 657, 178, and 189 in OESS Grade L0, L1, L2, and L3, respectively. In Classification Scenario 1 SP-no versus SP-yes, three experiments with region of interest of size 192 × 448 (Group 1), 96 × 224 (Group 2), and 96 × 224 stacked with pre-segmented annotated mask of SP area (Group 3) as input achieve an AUC of 0.863 (95% CI: 0.809, 0.917), 0.861 (95% CI: 0.805, 0.916), and 0.886 (95% CI: 0.836, 0.936), respectively. In Classification Scenario 2 Healthy versus Diseased, experiments in Group 1, Group 2 and Group 3 achieve an AUC of 0.848 (95% CI: 0.799, 0.896), 0.864 (95% CI: 0.819, 0.909), and 0.916 (95% CI: 0.883, 0.952), respectively.
We combined DenseNet model with ultrasound images for RA condition assessment. The feasibility of using DL to create an automatic RA condition classification system was also demonstrated. The proposed method can be an alternative to the initial screening of RA patients.
通过深度学习(DL)方法评估类风湿关节炎(RA)掌指关节超声图像的自动分类是否可行,为临床提供一种更客观、自动、快速的 RA 诊断方法。
使用基于 DenseNet 的 DL 模型,在 TensorFlow 1.13.1 中使用 Keras DL 库进行训练和测试。报告了曲线下面积(AUC)、准确性、敏感性和特异性的 95%置信区间值。使用 Python 3.7 中的 scikit-learn 库进行统计分析。
共从 208 例患者中获取了 1337 例 RA 超声图像,其数量分别为 OESS 分级 L0、L1、L2 和 L3 的 313、657、178 和 189 张。在分类场景 1 SP-无与 SP-有中,大小为 192×448(组 1)、96×224(组 2)和 96×224 堆叠有 SP 区域预分割标注掩模(组 3)作为输入的三个实验,AUC 分别为 0.863(95%CI:0.809,0.917)、0.861(95%CI:0.805,0.916)和 0.886(95%CI:0.836,0.936)。在分类场景 2 健康与患病中,组 1、组 2 和组 3 的实验分别获得 AUC 为 0.848(95%CI:0.799,0.896)、0.864(95%CI:0.819,0.909)和 0.916(95%CI:0.883,0.952)。
我们将 DenseNet 模型与超声图像相结合,用于评估 RA 病情。还证明了使用 DL 构建自动 RA 病情分类系统的可行性。该方法可作为 RA 患者初步筛查的替代方法。