Fukae Jun, Amasaki Yoshiharu, Fujieda Yuichiro, Sone Yuki, Katagishi Ken, Horie Tatsunori, Kamishima Tamotsu, Atsumi Tatsuya
Department of Rheumatology, Kuriyama Red Cross Hospital, Hokkaido, Japan.
Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
J Int Med Res. 2025 Feb;53(2):3000605251318195. doi: 10.1177/03000605251318195.
To study the classification performance of a pre-trained convolutional neural network (CNN) with transfer learning by artificial joint ultrasonography images in rheumatoid arthritis (RA).
This retrospective study focused on abnormal synovial vascularity and created 870 artificial joint ultrasound images based on the European League Against Rheumatism/Outcome Measure in Rheumatology scoring system. One CNN, the Visual Geometry Group (VGG)-16, was trained with transfer learning using the 870 artificial images for initial training and the original plus five additional images for second training. The models were then tested for the ability to classify joints using real joint ultrasound images obtained from patients with RA. The study was registered in UMIN Clinical Trials Registry (UMIN000054321).
A total of 156 clinical joint ultrasound images from 74 patients with RA were included. The initial model showed moderate classification performance, but the area under curve (AUC) for grade 1 synovitis was particularly low (0.59). The second model showed improvement in classifying grade 1 synovitis (AUC 0.73).
Artificial images may be useful for training VGG-16. The present novel approach of using artificial images as an alternative to actual images for training a CNN has the potential to be applied in medical imaging fields that face difficulties in collecting real clinical images.
通过类风湿关节炎(RA)患者的人工关节超声图像,研究采用迁移学习的预训练卷积神经网络(CNN)的分类性能。
这项回顾性研究聚焦于滑膜血管异常,并基于欧洲抗风湿病联盟/风湿病学疗效评估评分系统创建了870幅人工关节超声图像。使用一个名为视觉几何组(VGG)-16的CNN,通过迁移学习进行训练,最初使用870幅人工图像进行训练,第二次训练使用原始图像加另外五幅图像。然后使用从RA患者获得的真实关节超声图像测试模型对关节进行分类的能力。该研究已在日本大学医学情报网络临床试验注册中心注册(UMIN000054321)。
共纳入74例RA患者的156幅临床关节超声图像。初始模型显示出中等的分类性能,但1级滑膜炎的曲线下面积(AUC)特别低(0.59)。第二个模型在分类1级滑膜炎方面有所改善(AUC为0.73)。
人工图像可能有助于训练VGG-16。目前这种使用人工图像替代实际图像来训练CNN的新方法,有可能应用于在收集真实临床图像方面面临困难的医学成像领域。