Zhang Dongmei, Shen Xingyi, Zhang He, Huang Xue, He Hanzi, Ye Junli, Cardinale Francesca, Liu Jihong, Liu Junwei, Li Guohuai
Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
Hortic Res. 2022 Jan 5;9. doi: 10.1093/hr/uhab019.
Gummosis, one of the most detrimental diseases to the peach industry worldwide, can be induced by Lasiodiplodia theobromae. Ethylene (ET) is known to trigger the production of gum exudates, but the mechanism underlying fungus-induced gummosis remains unclear. In this study, L. theobromae infection triggered the accumulation of ET and jasmonic acid (JA) but not salicylic acid (SA) in a susceptible peach variety. Gaseous ET and its biosynthetic precursor increased gum formation, whereas ET inhibitors repressed it. SA and methyl-jasmonate treatments did not influence gum formation. RNA-seq analysis indicated that L. theobromae infection and ET treatment induced a shared subset of 1808 differentially expressed genes, which were enriched in the category "starch and sucrose, UDP-sugars metabolism". Metabolic and transcriptional profiling identified a pronounced role of ET in promoting the transformation of primary sugars (sucrose, fructose, and glucose) into UDP-sugars, which are substrates of gum polysaccharide biosynthesis. Furthermore, ethylene insensitive3-like1 (EIL1), a key transcription factor in the ET pathway, could directly target the promoters of the UDP-sugar biosynthetic genes UXS1a, UXE, RGP and MPI and activate their transcription, as revealed by firefly luciferase and yeast one-hybrid assays. On the other hand, the supply of SA and inhibitors of ET and JA decreased the lesion size. ET treatment reduced JA levels and the transcription of the JA biosynthetic gene OPR but increased the SA content and the expression of its biosynthetic gene PAL. Overall, we suggest that endogenous and exogenous ET aggravate gummosis disease by transactivating UDP-sugar metabolic genes through EIL1 and modulating JA and SA biosynthesis in L. theobromae-infected peach shoots. Our findings shed light on the molecular mechanism by which ET regulates plant defense responses in peach during L. theobromae infection.
流胶病是全球桃产业中最具危害性的病害之一,可由可可毛色二孢菌引起。已知乙烯(ET)会引发树胶渗出物的产生,但真菌诱导流胶病的潜在机制仍不清楚。在本研究中,可可毛色二孢菌感染引发了感病桃品种中ET和茉莉酸(JA)的积累,但未引发水杨酸(SA)的积累。气态ET及其生物合成前体增加了树胶形成,而ET抑制剂则抑制了树胶形成。SA和茉莉酸甲酯处理不影响树胶形成。RNA测序分析表明,可可毛色二孢菌感染和ET处理诱导了1808个差异表达基因的共同子集,这些基因富集在“淀粉和蔗糖、UDP-糖代谢”类别中。代谢和转录谱分析确定了ET在促进初级糖(蔗糖、果糖和葡萄糖)转化为UDP-糖方面的显著作用,UDP-糖是树胶多糖生物合成的底物。此外,萤火虫荧光素酶和酵母单杂交试验表明,ET途径中的关键转录因子乙烯不敏感3样1(EIL1)可直接靶向UDP-糖生物合成基因UXS1a、UXE、RGP和MPI的启动子并激活其转录。另一方面,SA以及ET和JA抑制剂的供应减小了病斑大小。ET处理降低了JA水平和JA生物合成基因OPR的转录,但增加了SA含量及其生物合成基因PAL的表达。总体而言,我们认为内源性和外源性ET通过EIL1反式激活UDP-糖代谢基因并调节可可毛色二孢菌感染的桃嫩枝中JA和SA的生物合成来加重流胶病。我们的研究结果揭示了ET在可可毛色二孢菌感染期间调节桃树防御反应的分子机制。