Michaelian Karo, Cano Mateo Ramón Eduardo
Department of Nuclear Physics and Application of Radiation, Instituto de Física, Universidad Nacional Autónoma de México, Cto. de la Investigación Científica, Cuidad Universitaria, Mexico City C.P. 04510, Mexico.
Facultad de Ciencias, Universidad Nacional Autónoma de México, Cto. de la Investigación Científica, Cuidad Universitaria, Mexico City C.P. 04510, Mexico.
Entropy (Basel). 2022 Jan 1;24(1):76. doi: 10.3390/e24010076.
Through a modern derivation of Planck's formula for the entropy of an arbitrary beam of photons, we derive a general expression for entropy production due to the irreversible process of the absorption of an arbitrary incident photon spectrum in material and its dissipation into an infrared-shifted grey-body emitted spectrum, with the rest being reflected or transmitted. Employing the framework of Classical Irreversible Thermodynamic theory, we define the generalized thermodynamic flow as the flow of photons from the incident beam into the material and the generalized thermodynamic force is, then, the entropy production divided by the photon flow, which is the entropy production per unit photon at a given wavelength. We compare the entropy production of different inorganic and organic materials (water, desert, leaves and forests) under sunlight and show that organic materials are the greater entropy-producing materials. Intriguingly, plant and phytoplankton pigments (including chlorophyll) reach peak absorption exactly where entropy production through photon dissipation is maximal for our solar spectrum 430<λ<550 nm, while photosynthetic efficiency is maximal between 600 and 700 nm. These results suggest that the evolution of pigments, plants and ecosystems has been towards optimizing entropy production, rather than photosynthesis. We propose using the wavelength dependence of global entropy production as a biosignature for discovering life on planets of other stars.
通过对普朗克任意光子束熵公式的现代推导,我们得出了一个通用表达式,用于描述由于物质吸收任意入射光子光谱并将其耗散为红外偏移的灰体发射光谱这一不可逆过程所导致的熵产生,其余部分则被反射或透射。利用经典不可逆热力学理论框架,我们将广义热力学流定义为从入射光束进入物质的光子流,广义热力学力则是熵产生除以光子流,即在给定波长下单位光子的熵产生。我们比较了不同无机和有机材料(水、沙漠、树叶和森林)在阳光下的熵产生情况,结果表明有机材料是产生熵更多的材料。有趣的是,植物和浮游植物色素(包括叶绿素)的吸收峰值恰好位于我们太阳光谱430<λ<550纳米范围内通过光子耗散产生熵最大的位置,而光合效率在600至700纳米之间最大。这些结果表明,色素、植物和生态系统的进化是朝着优化熵产生,而非光合作用的方向进行的。我们提议将全球熵产生的波长依赖性用作一种生物特征,以发现其他恒星行星上的生命。