Department of Nanoscience, University of North Carolina at Greensboro, 2907 East Gate City Boulevard, Greensboro, North Carolina 27401, United States.
Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
ACS Nano. 2022 Feb 22;16(2):2598-2607. doi: 10.1021/acsnano.1c09335. Epub 2022 Jan 21.
Two-dimensional materials and their van der Waals heterostructures enable a large range of applications, including label-free biosensing. Lattice mismatch and work function difference in the heterostructure material result in strain and charge transfer, often varying at a nanometer scale, that influence device performance. In this work, a multidimensional optical imaging technique is developed in order to map subdiffractional distributions for doping and strain and understand the role of those for modulation of the electronic properties of the material. As an example, vertical heterostructures comprised of monolayer graphene and single-layer flakes of transition metal dichalcogenide MoS were fabricated and used for biosensing. Herein, the optical label-free detection of doxorubicin, a common cancer drug, is reported three independent optical detection channels (photoluminescence shift, Raman shift, and graphene enhanced Raman scattering). Non-uniform broadening of components of multimodal signal correlates with the statistical distribution of local optical properties of the heterostructure. Multidimensional nanoscale imaging allows one to reveal the physical origin for such a local response and propose the best strategy for the mitigation of materials variability and future device fabrication, enabling multiplexed biosensing.
二维材料及其范德华异质结构可实现广泛的应用,包括无标记生物传感。异质结构材料中的晶格失配和功函数差异导致应变和电荷转移,通常在纳米尺度上变化,从而影响器件性能。在这项工作中,开发了一种多维光学成像技术,以便绘制掺杂和应变的亚衍射分布,并了解它们在调制材料电子特性方面的作用。作为一个例子,制备了由单层石墨烯和单层过渡金属二卤化物 MoS 薄片组成的垂直异质结构,并将其用于生物传感。在这里,报告了通过三个独立的光学检测通道(光致发光位移、拉曼位移和石墨烯增强拉曼散射)对常见癌症药物阿霉素的无标记光学检测。多模态信号分量的非均匀展宽与异质结构局部光学性质的统计分布相关。多维纳米尺度成像允许揭示这种局部响应的物理起源,并提出减轻材料变异性和未来器件制造的最佳策略,从而实现多重生物传感。