Suppr超能文献

探索性结构方程建模:实用指南及使用Mplus便捷在线工具的教程

Exploratory Structural Equation Modeling: Practical Guidelines and Tutorial With a Convenient Online Tool for Mplus.

作者信息

van Zyl Llewellyn E, Ten Klooster Peter M

机构信息

Department of Industrial Engineering, University of Eindhoven, Eindhoven, Netherlands.

Optentia Research Focus Area, North-West University, Vanderbijlpark, South Africa.

出版信息

Front Psychiatry. 2022 Jan 7;12:795672. doi: 10.3389/fpsyt.2021.795672. eCollection 2021.

Abstract

Critics of positive psychology have questioned the validity of positive psychological assessment measures (PPAMs), which negatively affects the credibility and public perception of the discipline. Psychometric evaluations of PPAMs have shown that various instruments produce inconsistent factor structures between groups/contexts/times frames, that their predictive validity is questionable, and that popular PPAMs are culturally biased. Further, it would seem positive psychological researchers prioritize date-model-fit over measurement quality. To address these analytical challenges, more innovative and robust approaches toward the validation and evaluation of PPAMs are required to enhance the discipline's credibility and to advance positive psychological science. Exploratory Structural Equation Modeling (ESEM) has recently emerged as a promising alternative to overcome of these challenges by incorporating the best elements from exploratory- and confirmatory factor analyses. ESEM is still a relatively novel approach, and estimating these models in statistical software packages can be complex and tedious. Therefore, the purpose of this paper is to provide novice researchers with a practical tutorial on how to estimate ESEM with a convenient online tool for Mplus. Specifically, we aim to demonstrate the use of ESEM through an illustrative example by using a popular positive psychological instrument: the . By using the MHC-SF as an example, we aim to provide (a) a brief overview of ESEM (and different ESEM models/approaches), (b) guidelines for novice researchers on how to estimate, compare, report, and interpret ESEM, and (c) a step-by-step tutorial on how to run ESEM analyses in Mplus with the De Beer and Van Zy ESEM syntax generator. The results of this study highlight the value of ESEM, over and above that of traditional confirmatory factor analytical approaches. The results also have practical implications for measuring mental health with the MHC-SF, illustrating that a bifactor ESEM Model fits the data significantly better than any other theoretical model.

摘要

积极心理学的批评者对积极心理评估量表(PPAMs)的有效性提出了质疑,这对该学科的可信度和公众认知产生了负面影响。对PPAMs的心理测量学评估表明,各种工具在不同群体/背景/时间框架之间产生不一致的因素结构,其预测效度值得怀疑,并且流行的PPAMs存在文化偏见。此外,积极心理学研究人员似乎更注重数据模型拟合而非测量质量。为应对这些分析挑战,需要更具创新性和稳健性的方法来验证和评估PPAMs,以提高该学科的可信度并推动积极心理科学的发展。探索性结构方程建模(ESEM)最近作为一种有前途的替代方法出现,它通过整合探索性因素分析和验证性因素分析的最佳元素来克服这些挑战。ESEM仍然是一种相对新颖的方法,在统计软件包中估计这些模型可能既复杂又繁琐。因此,本文的目的是为新手研究人员提供一个实用教程,介绍如何使用方便的在线工具Mplus来估计ESEM。具体而言,我们旨在通过使用一种流行的积极心理工具:[此处原文缺失具体工具名称],通过一个示例来说明ESEM的使用。以MHC - SF为例,我们旨在提供:(a)ESEM(以及不同的ESEM模型/方法)的简要概述;(b)新手研究人员关于如何估计、比较、报告和解释ESEM的指南;(c)使用De Beer和Van Zy ESEM语法生成器在Mplus中运行ESEM分析的逐步教程。本研究结果突出了ESEM相对于传统验证性因素分析方法的价值。这些结果对于使用MHC - SF测量心理健康也具有实际意义,表明双因素ESEM模型比任何其他理论模型对数据的拟合效果都要好得多。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a93/8779472/bc5dc7dd7716/fpsyt-12-795672-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验